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Abstract. Depending on the application, local feature detectors should
comply with properties that are often contradictory, e.g . distinctiveness
vs. robustness. Providing a good balance is a standing problem in the
field. In this direction, we propose a novel approach for local feature
detection starting from sampled edges. The detector is based on shape
stability measures across the weighted α-filtration, a computational ge-
ometry construction that captures the shape of a non-uniform set of
points. The extracted features are blob-like and include non-extremal
regions as well as regions determined by cavities of boundary shape.
Overall, the approach provides distinctive regions, while achieving high
robustness in terms of repeatability and matching score, as well as com-
petitive performance in a large scale image retrieval application.

1 Introduction

Local features are popular in computer vision tasks due to their invariance to
illumination and viewpoint changes. Ideally, local features should comply to a
set of properties, namely, repeatability, distinctiveness, locality, quantity, accu-
racy and computational efficiency [25]. These properties are often contradictory
and cannot be satisfied simultaneously, like distinctiveness vs. locality or robust-
ness and quantity vs. computational efficiency. Hence, although several feature
detectors have been proposed, there is still a growing need for methods offering
better balance between the desired properties.

State-of-the-art methods are based on measures of first- and second-order
gray value derivatives (e.g . second-moment matrix or Hessian matrix [17]) or on
intensity variations [23][14] and—depending on the application—can be consid-
ered quite successful. Image edges on the other hand, though bound to naturally
stable structures, have not been so successful yet. In this paper, we conjec-
ture that, within a multi-scale representation, a distinctive region approximately
maintains its shape across scale, as determined by surrounding edges.

We therefore introduce a detector that groups edge points based on location,
gradient strength and local shape. To capture local shape, we employ α-shapes,
a well-known method in computational geometry introduced by Edelsbrunner et
al . [8]. In doing so, we devise an efficient way to overcome the main weakness of
the method, namely automatic selection of the value of α that best represents
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Fig. 1. Feature detection based on α-shapes. (a) Input image. (b) Edge samples with
assigned weights as squared radii (blue) and triangulation. Triangle colors denote dis-
tinct connected components of the α-complex. Detected features by: (c) WαSH detector
and (d) MSER.

the underlying point set. We also show how noisy points or groupings are au-
tomatically filtered out by a shape-based stability measure and how the entire
method is controlled by a simple and intuitive parameter. A detection example
is given in Fig. 1.

We treat a local feature as a region delineated by a set of points sampled from
its contour. Although not critical, we use a roughly uniform sampling scheme
along binary edges found by an edge detector and employ α-shapes to capture
the evolution of local shape in a multi-scale setting. α-shapes can be thought
of as a generalization of the convex hull, being parametrized by scalar α ≥ 0.
Starting from the convex hull of the point set for α =∞, they reduce to the set
itself at the other extreme, α = 0. An α-shape is a filtration, a partial ordering
of Delaunay simplices (edges and triangles in two dimensions) [27].

Weighted α-shapes [7] provide a richer description of the input. For a single
value of α, i.e. for a single scale, weighted α-shapes capture different levels of
spatial details. The weighted α-filtration is the multi-scale representation we
adopt. To capture the evolving topology of local regions in the filtration, we
employ a component tree, similar to [19]. By applying stability measures on the
resulting representation we select distinctive and repeatable local features.

The remaining of the paper is organized as follows: In section 2 we discuss
related work, and then describe our detector in detail in section 3. Results are
provided in section 4 followed by conclusions and discussion in section 5.

2 Related work

The literature on local feature detection is rich and since the early work of
Beaudet [3] and Harris and Stevens [9], based on the Hessian matrix and the sec-
ond moment matrix respectively, many detectors have been proposed grounding
on similar or novel ideas. In his inspiring work, Lindeberg et al . extended detec-
tors by making them scale-invariant [11] and establishing the theoretical foun-
dations for making them affine-invariant [12]. Based on these foundations, Lowe
proposed the scale invariant feature transform (SIFT) in [13] and Mikolajczyk
et al . the affine-adapted version of the Harris and Hessian detectors [16], [17].

The maximally stable extremal regions (MSER) of Matas et al . [14], one of
the best performing detectors in [17], detects regions of stable intensity and
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therefore avoids common problems of gradient-based methods like localization
accuracy and noise. The recent trend of achieving a good balance between effi-
ciency and performance has led to a group of computationally efficient detectors
like SURF [2], an approximate version of SIFT, and FAST [23], introducing fast
corner detection based on an intensity comparison test in a small neighborhood.
Recently, BRISK [10] build on FAST detector and provide real-time detection
and description of local features with matching performance being comparable
to SIFT and SURF.

Although naturally meaningful, image edges have attracted less attention
with the reasons being mainly related to the lack of stable edges and the com-
putational inefficiency. One of the earliest attempts, edge-based region detector
(EBR), starts from corner points and exploits nearby edges by measuring pho-
tometric quantities across them. It is suitable for scenes containing intersection
of edges (e.g . man-made structures like buildings), but not for generic matching,
as shown in [17]. Mikolajczyk et al . in [18] propose an edge-based detector that
combines Canny edge detection with automatic scale selection and use it for
object recognition. For efficiency, they start from densely sampled edge points,
an approach that we also adopt. Rapantzikos et al . compute the binary distance
transform of Canny edges and detect regions by grouping its local maxima,
guided by the gradient strength of nearby edges [22].

There are also methods that exploit gradient strength directly, without edge
detection. Zitnick et al . [26] apply an oriented filter bank to the input image
and detect edge foci (EF), i.e. points that are roughly equidistant from edgels
with orientations perpendicular to the points. The idea is quite interesting, but
computationally expensive. Avrithis et al . compute the weighted medial axis,
decompose it into meaningful parts and group regions by taking both contrast
and shape into account [1]. Medial features (MFD) are then detected based on
shape. Although more information is used, gradient strength is more sensitive
to lighting and scale variations than binary edges.

Computational geometry is rich in applications based on α-shapes, as op-
posed to computer vision. One of the earliest applications has been to surface
reconstruction from an unorganized set of points [7]. Teichmann et al . [24] have
used them to reconstruct the shape of point sets and achieve a more accurate
separation of surfaces, but they rely heavily on user input. Conformal α-shapes
and the corresponding filtration, introduced by Cazals et al . in [5], are based
on a global scale parameter α̂ and two local ones, adjusted to some neighbor-
hood of each point. They show interesting results on surface reconstruction of
non-uniformly sampled surfaces. In the same direction, Zomorodian et al . [27]
predict protein structure by employing α-shapes to detect interacting atoms in
a protein molecule.

Furthermore, α-shapes have been used for studying pockets, defined as re-
gions with limited accessibility from the outside, measuring the surface area and
volume of macromolecules, and the packing density of proteins [7]. α-shapes
have been also used to reconstruct boundaries of noisy edge maps. Starting from
binary edge samples, Meine et al . [15] construct the Delaunay triangulation and



4 Christos Varytimidis, Konstantinos Rapantzikos and Yannis Avrithis

select a subset of its edges to complete the object boundaries. Their main criteria
are triangle size and average color.

Building on edge-based methods, we start from sampled edges like [18]. We
use shape as the main selection criterion, a choice that bears similarities to [1],
although our geometric representation is entirely different. There are also simi-
larities to MSER [14], in the sense that we employ a hierarchical representation
of nested sets. However, we apply this representation on the α-filtration rather
than the level sets of image intensity. As a by-product, our method is able to de-
tect gray regions that are adjacent to both brighter and darker ones, as opposed
to MSER that can only detect bright or dark extremal regions, as in Fig. 3bc.
Furthermore, the proposed detector can handle regions determined by cavities
of the boundary shape, as in Fig. 1, bearing similarities to the pockets [7], and
regions that are not enclosed by complete boundaries like in Fig. 3a.

3 WαSH Detector

3.1 Image representation

We assume an input (grayscale) image is given as a function f on the plane and
that g is its gradient magnitude ‖∇f‖ normalized in interval [0, 1]. We apply
a binary edge detector on g and sample the resulting edge map E to obtain a
discrete set of edge points P ⊆ R2. Sampling is roughly uniform along edges
with a fixed sampling interval s, so samples will typically not correspond to key-
points like maxima of curvature. Although sparsely sampled along the edges, the
points in P capture the shape of the detected boundaries. For each point p ∈ P ,
we define its weight w(p) ≥ 0 to be multiple of its gradient strength,

w(p) = g(p)
(s

2

)2
, (1)

with g(p) ∈ [0, 1]. The reason for this choice of weight w will be made clear at
the end of section 3.2. In practice, the binary edge map is obtained by the Canny
edge detector [4]. We do not rely on a clear edge map and therefore the high and
low hysteresis thresholds of the detector are kept fixed.

3.2 Weighted α-shapes

The definition of α-shapes is based on the Delaunay triangulation. Weighted
α-shapes are based on its generalization, the regular triangulation formed by
replacing the Euclidean distance by the power to weighted points. The discussion
given here mostly follows [7], but simplifies for the case of 2 dimensions.

A point p ∈ P along with its weight w(p) ≥ 0 makes up a pair (p, w(p)) that
is called a weighted point and can be seen as a circle centered at p, with squared
radius w(p). We will use the same symbol p for both a circle or weighted point,
and will disambiguate as necessary. Given two points p, q ∈ P , define

π(p, q) = ‖p− q‖2 − w(p)− w(q). (2)
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Circles p, q intersect at right angles iff π(p, q) = 0; we then say that p, q are
orthogonal. Given a subset T ⊆ P of three points, there is a unique circle that
is orthogonal to all circles of T . We denote the corresponding weighted point by
cT . The triangle σT with vertices given by T is called regular if

π(p, cT ) = 0 for all p ∈ T, (3)

π(p, cT ) > 0 for all p ∈ P \ T, (4)

where (3) is equivalent to cT being orthogonal to all points of T . The collection
R of all regular triangles over P is called the regular triangulation of P . Observe
that, if w(p) = 0 for all p ∈ T , the weighted point cT is the circumcircle of
triangle σT . In this unweighted case, the triangulation reduces to Delaunay.

The collection K of all triangles in R and their faces (line segments and
points) is a simplicial complex : each triangle, line segment or point is a 2-, 1-, or
0-simplex respectively, and we will refer to it as simplex in general. If we define
a size ρT ≥ 0 for each simplex σT ∈ K, then the weighted α-complex of P is the
subset of K containing all simplices up to a given size α ≥ 0,

Kα = {σT ∈ K : ρT < α}. (5)

Finally, the weighted α-shape of P [7] is the union of all such simplices,

Wα =
⋃
σ∈Kα

σ. (6)

Observe that W+∞ is the convex hull of P . It remains to define the size ρT
of a point, line segment or triangle σT , when T contains 1, 2 or 3 points of P ,
respectively. The size of a point p ∈ P is equal to its weight, ρ{p} = w(p). Given
a set of two points T = {p, q} ⊆ P , the size ρT of the associated line segment is
the squared radius of the unique circle that is orthogonal to circles p, q, whose
center is collinear with p, q, as in Fig. 2a. Similarly, given a set of three points
T = {p, q, r} ⊆ P , the size ρT of the associated triangle is the squared radius
of the unique circle that is orthogonal to circles p, q, r, as in Fig. 2b. From the
definition of the weight function in (1) follows that for two points p, q along an
image edge, sizes ρ{p} and ρ{q} take values in [0, (s/2)2]. This ensures that their
corresponding circles, as shown in Fig. 2, do not overlap and the line segment
T = {p, q} has ρT ≥ 0.

3.3 Component tree

All simplices of K are typically ordered by ascending size to obtain what is called
a weighted α-filtration [7]. In this work, we deviate from this standard setting
in two ways. First, we only consider triangles and their edges (line segments)
discarding points p ∈ P themselves. We thus construct complex

K′ = {σT ∈ K : |T | ≥ 2}. (7)
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Fig. 2. (a) Size of a 2-point set {p, q}, as the squared radius of a circle that is orthogonal
to p, q. (b) Size of a 3-point set {p, q, r}, as the squared radius of the circle that is
orthogonal to p, q, r.

This is justified because edge size helps control connectivity of triangles, but
points do not. Second, contrary to (5), we consider the upper α-complex

Kα = K′ \ Kα = {σT ∈ K′ : ρT ≥ α} (8)

ordered by descending α. As in [7], we need only consider a finite set of values
for α. In particular, we sort all σT ∈ K′ by descending size ρT to obtain sequence
(σ1, . . . , σn) where n = |K′|. If ρi is the size of σi for i = 1, . . . , n, then ρ1 ≥
. . . ≥ ρn. Now, if Ki = {σ1, . . . , σi}, we obtain the upper α-filtration

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K′. (9)

Starting from the largest element of size ρ1 and decreasing the value of α towards
ρn, the upper α-complex models the growing cavities of the original shape. To
capture its evolving topology, we construct a component tree, similar to [19].

To define connectedness on the complex, we specify neighboring relations as
follows: the neighbors of each triangle σT ∈ K′ (with |T | = 3) are its three edges,
while, the neighbors of each edge σE ∈ K′ (with |E| = 2) are the two adjacent
triangles in the triangulation. We denote the neighborhood of simplex σ ∈ K′ by
N(σ). Since an edge is not larger than its two adjacent triangles, the intuition is
that this edge can keep the two triangles disconnected until it is processed itself.
Eventually, this timing depends on image gradient.

Given this neighborhood system, we start off with all simplices in K′ being
individual components, and process them in descending order of size, joining
them with their neighbors that have already been processed. This process is
specified in Algorithm 1.

3.4 Feature selection

While tracking the evolution of the connected components of the upper α-
complex, we measure the significance of changes in its topology so as to decide
on stability or distinctiveness of relevant image regions. Whenever a new com-
ponent arises by joining two adjacent components, these two components are



WαSH: Weighted α-Shapes for Local Feature Detection 7
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MFD

Edge Foci detector

Hessian Affine detector
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Fig. 3. Detection of (a) incomplete boundaries and (b)(c) non-extremal regions.
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individually considered as potential features. We choose to base the decision on
simple measurements requiring minor computational overhead.

In particular, consider component κU , which is a set of simplices (edges and
triangles) that have been processed. When κU is joined through a boundary edge
σT of size ρT to another component, we compute the strength of κU as the ratio

s(κU ) =
a(κU )

ρT
, (10)

where a(κU ) is its total area—precisely, the area of the union of all simplices in
κU . What remains to do is select component κU as a feature, if its strength is
larger than a fixed threshold τ , and fit a patch over its region support for de-
scriptor extraction. Observe that, since we are processing simplices in descending
order of size, ρT stands in fact for the largest opening or the weakest gradient
strength over the boundary of component κU . It follows that strength favors
large components with small (or no) openings in their boundary. Since size ρ
measures squared length, component strength is a scale invariant quantity.

Some examples are shown in Fig. 3. We can detect regions that are not
completely bounded by edges, as the two perceived concentric circles in Fig. 3a,
or regions that are not extremal in the intensity domain, in contrast to MSER,
as shown in Fig. 3bc.

3.5 Algorithm

The pseudocode for the complete method is given in Algorithm 1. The first
steps are straightforward. Function Complex computes complex K and size
map ρ, given the regular triangulation R. Function Neighbor computes the
neighborhood map N of a set of edges and triangles, while K′ is as defined in
(7). Function Area computes the area of a triangle given its vertices in point
set T , and it returns 0 for an edge.

We use two different tree structures to keep track of connected components,
as in [19]. The first is a forest where each simplex serves as the root of a subtree
containing all larger simplices in the same component. We maintain a list of
children for each simplex, using function AddChild, while all simplices are
initially assumed to be leaves. The second is a standard disjoint set forest, with
simplices pointing only to their parent, and with functions MakeSet, Find and
Union having their ordinary meaning [6]. The two structures are interconnected
via pointer root. The second is used for efficiency, while the first for information
access. In particular, for each selected component, we collect its simplices via
breadth-first search in the subtree of its root simplex and fit a patch to their
convex hull—this is not shown in Algorithm 1.

The computational cost of the regular triangulation is O(n log n) and the
required space is O(n). Hence the cost of weighted α-shape construction is also
O(n log n). The triangulation only needs to be computed once; the remaining
part of the algorithm that is based on the component tree is quasi-linear in n
[19], that is, linear for all practical purposes.
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Algorithm 1: WαSH Feature Detection

input : grayscale image f
output: local feature set F

1 g ← ‖∇f‖/max{‖∇f‖} // normalized gradient
2 E ← Canny(g) // edge detection
3 P ← Sample(E) // edge sampling
4 R← Regular(P ) // regular triangulation
5 (K, ρ)← Complex(R) // simplicial complex + sizes
6 N ← Neighbor(K′) // neighborhood system

7 F ← ∅
8 foreach σT ∈ K′ do // initialize each simplex
9 MakeSet(σT ) // as an individual component

10 σT .area ← Area(T ) // with its own area
11 σT .root ← σT

12 foreach σT ∈ K′ in descending order of ρT do // current simplex
13 κT ← Find(σT ) // current component κT

14 rT ← κT .root
15 foreach σU ∈ N(σT ) such that ρU ≥ ρT do // adjacent, processed simplex
16 κU ← Find(σU) // adjacent component κU

17 rU ← κU .root
18 if κT 6= κU then // if different components
19 if |U | = 3 ∧ rU .area/ρT > τ then // if κU is triangle & strong
20 F ← F ∪ rU // select it

21 rT .AddChild(rU) // add it below κT

22 rT .area ← rT .area + rU .area // merge areas
23 κT ← Union(κT , κU) // and disjoint sets
24 κT .root ← rT

4 Experiments

We demonstrate the effectiveness of our WαSH detector by measuring repeata-
bility and matching score on the standard dataset and benchmark of [17], and
by carrying out a retrieval experiment on Oxford Buildings [20], following the
evaluation protocol that has been introduced in [21] and recently used to eval-
uate detectors in [26] and [1]. The performance of the WαSH detector depends
only on the selection threshold τ . For all experiments we set τ = 100, which has
been set after subjective evaluation on the dataset of [17]. The WαSH detector
executable is available online1.

4.1 Repeatability and matching score

We use the publicly available datasets of [17] to test our detector against the
state-of-the-art. The sequences evaluate the effect of blur (bikes), scale/rotation

1 http://image.ntua.gr/iva/research/wash
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(a) (b)

(c) (d)

Fig. 4. Features detected by WαSH detector for a pair of images from (a)(b) the bikes
sequence and (c)(d) Oxford Buildings (Worcester College).

(boat), as well as changes in lighting (leuven) and viewpoint (wall). Fig. 4ab
show a detection example on the first two images of the bike sequence. There
are not many overlapping detections, while most part of the image is covered.

Fig. 5 shows repeatability and matching score plots for all the detectors
included in [17] with the addition of MFD [1] that has proved to have competitive
performance to ours (see also Section 4.2). The WαSH detector performs among
the best in all cases, while keeping the number of features considerably low; in
particular, for the first image of each sequence, bikes: 409, boat : 365, leuven: 299
and wall : 782 features. It is quite invariant to scale and blur, which is attributed
to the proposed selection criterion on the α-filtration and—naturally—to the
stability of image edges across scales. For the same reasons, the detector performs
very well under illumination changes.

4.2 Large scale image retrieval

In this section we test the performance of the WαSH detector on an image re-
trieval task using the Oxford Buildings dataset (an example is given in Fig. 4cd).
Comparisons are performed against the Hessian-Affine, MSER, SIFT and SURF
detectors, plus the recently introduced EF [26] and MFD [1] detectors, follow-
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Fig. 5. (a) Repeatability, (b) matching score, and (c) correct matches. Scenes from top
to bottom: bikes, boat, leuven, wall.

ing their experimental framework. Features are extracted by the corresponding
publicly available executables, using default parameters.

We extract SIFT descriptors for all detectors except SURF, for which we use
the corresponding descriptor. We then build two visual vocabularies of different
sizes for each detector, namely 50K and 200K, by clustering the descriptors us-
ing approximate k-means [20]. For each vocabulary, we carry out the retrieval
experiment using the bag-of-words (BoW) model for representation, an inverted
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Detector WαSH MFD EF HessAff MSER SIFT SURF

Features (×106) 7.19 7.64 19.72 29.02 13.33 11.13 6.84

Detection time (s) 1.32 2.35 13.51 6.67 4.48 5.29 0.42

Inverted file (MB)
50K 44.1 51.9 132.1 116.2 71.2 75.9 47.8
200K 49.1 58.4 146.2 128.8 78.8 84.0 53.5

BoW
query (ms)

50K 0.92 0.94 3.11 2.71 1.32 1.51 0.88
200K 0.75 0.68 1.81 1.61 0.88 0.95 0.64

FastSM
query (s)

50K 1.43 2.45 26.01 25.17 6.57 8.35 3.75
200K 1.35 0.93 4.69 6.10 2.20 5.29 3.45

BoW (mAP)
50K 0.529 0.531 0.455 0.489 0.489 0.422 0.466
200K 0.592 0.600 0.528 0.578 0.568 0.494 0.575

FastSM (mAP)
50K 0.541 0.540 0.500 0.516 0.524 0.446 0.497
200K 0.588 0.600 0.566 0.608 0.593 0.516 0.591

Table 1. Results of the retrieval experiment Oxford Buildings for all detectors tested
and for the 50K and 200K vocabularies. The number of features refers to the entire
dataset, while detection time is average per image. Query times are average per query.
mAP is measured on the same dataset used for vocabulary training.

Detectors WαSH MFD

Features (×106) 3.03 2.59

BoW (mAP)
50K 0.530 0.516
100K 0.543 0.534

FastSM (mAP)
50K 0.524 0.517
100K 0.539 0.537

Table 2. mAP measurements for a similar retrieval experiment as in Table 1 for W
αSH detector against MFD, with a lower number of detected features, targeting 3×106

features for the entire dataset. This time 50K and 100K vocaburaries are built, to avoid
overfitting.

file for indexing, tf-idf weighting and fast spatial matching (FastSM) [20] for spa-
tial verification. BoW histograms are matched using the histogram intersection
following `1 normalization, while for geometric re-ranking we set the minimum
inliers to 7. The evaluation metric is mean Average Precision (mAP).

Table 1 summarizes the total number of features, the average detection time
per image, average query time and mAP measurements for all detectors. The
number of detected features used is critical, since it determines both the amount
of memory used for the index and the query time, with FastSM being quadratic
in the number of features. The performance of the WαSH detector is at the state-
of-the-art, despite using a low number of features (e.g. 1/4 of the Hessian-affine
features), hence having a much lower memory footprint. The benefit in terms of
query time is also considerable. Increasing the size of the vocabulary boosts the
performance of all detectors up to a point.
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The performance of MFD is similar to that of the WαSH detector using
approximately the same number of features, an observation that has led us to
an additional experiment with the detectors tuned to produce a significantly
smaller number of regions. Our aim is to test the ability of these detectors to go
large scale. By reducing the number of features detected, we have to decrease the
size of the vocabulary to prevent overfitting. In this setup, we create vocabularies
of 50K and 100K visual words. The performance of the WαSH detector is still
high in all cases, especially with the 50K visual vocabulary, as shown in Table
2.

5 Discussion

We have introduced the WαSH detector that relies on grouping edge samples
using a shape stability measure on a weighted α-filtration. Weighted α-shapes
appear particularly well-suited to model the topology of sampled points, with
weights reflecting edge strength. Among our contributions are the use of the
α-filtration to represent cavities of boundary shape, the neighboring system of
triangles and edges to associate connectedness to boundary strength, the use
of the component tree to capture the topology of the α-complex and the fea-
ture selection scheme resulting in stable features with minimal computational
overhead.

The detected features include cases of salient regions that cannot always be
handled by existing detectors, like non-extremal regions or regions that are not
enclosed by complete boundaries, and regions determined by cavities of bound-
ary shape. Yet, the detected feature set is typically small, resulting in significant
gains in memory and speed in a large-scale image retrieval application with-
out compromising performance. The detection itself is computationally efficient,
exploiting regular triangulation and component trees. In the future, we will con-
sider exploiting them for description and propose an integrated method for local
features and descriptors.
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