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Abstract

We present a very simple computational model for planar shape decomposition that
naturally captures most of the rules and salience measures suggested by psychophysical
studies, including the minima and short-cut rules, convexity, and symmetry. It is based on
a medial axis representation in ways that have not been explored before and sheds more
light into the connection between existing rules like minima and convexity. In particular,
vertices of the exterior medial axis directly provide the position and extent of negative
minima of curvature, while a traversal of the interior medial axis directly provides a small
set of candidate endpoints for part-cuts. The final selection follows a simple local con-
vexity rule that can incorporate arbitrary salience measures. Neither global optimization
nor differentiation is involved. We provide qualitative and quantitative evaluation and
comparisons on ground-truth data from psychophysical experiments.

1 Introduction

HE psychophysical, ecological, and computational aspects of planar shape decomposi-
tion into parts have been studied for more than five decades [25]. Although a complete
theory of object recognition remains an impossibility, it is believed that our ability to recog-
nize objects by their silhouette alone is related to simple rules by which the visual system
decomposes shapes into parts [8]. In computer vision, object detection and recognition has
deviated from such studies, but understanding visual perception towards learning better rep-
resentations is always relevant [29].

Recent work on the subject has introduced ever more complex computational models
relying on combinatorial optimization [16, 18, 23]. The main focus of such models is con-
vexity, although the support from psychophysical studies is limited or absent [11, 24]. The
most recognized rules underpinning shape decomposition are the minima rule [8] and the
short-cut rule [27], along with the definition of part-cuts [26]. However, attempts to reflect
these rules into simple computational models still resort to optimization and new ad-hoc
rules [17]. Although the medial axis has been one of the first representations used even be-
fore the formulation of these rules [1, 3], it is not frequently used today. On the other hand,
quantitative evaluation has been practically impossible until recently [5, 12].

Contribution. In this work, we revisit the problem assuming the medial axis representation
and introduce a new computational model referred to as medial axis decomposition (MAD).
Contrary to common belief [ 17], we argue that this representation is both efficient and robust,
at least as far as decomposition is concerned, and as long as a part hierarchy [25] is not
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(a) exterior (b) interior (c) cuts

Figure 1: Main elements of our method. (a) Exterior medial axis and concave corners (in
green) as boundary arcs that are each the projection of one medial axis end vertex (minima
rule). (b) Interior medial axis and candidate cuts (in red) whose endpoints are contained in
corners and are projection points of the same medial axis point; only one such cut is selected
per corner and medial axis branch. (c) Final cuts according to short-cut and convexity rules:
the shortest cuts are selected for each corner such that each shape part is locally convex at
the corner, roughly forming an interior angle less than 7 (up to tolerance).

sought. We show that it is possible to incorporate all rules suggested by psychophysical
studies into a computational model that is so simple that one nearly “reads off” part-cuts
from the medial axis. In doing so, we suggest a stronger definition of part-cuts concerning
local symmetry such that the list of candidate cuts is linear in the number of minima. We
also shed more light into the relation of minima to convexity by relaxing the latter to local
convexity. Contrary to global optimization models, this guarantees robustness [25].

The main ideas of our work are illustrated in Fig. 1. As in most related work, a shape is
decomposed into parts by defining a number of part-cuts which are line segments contained
in the shape. According to the minima rule [8], the part-cut endpoints are points of negative
minima of curvature of the shape boundary curve. But it is known [4] that such points
are exactly projection points (boundary points of minimal distance) of end vertices of the
exterior medial axis (the medial axis of the complement of the shape). Moreover, as shown
in Fig. la, one may get from a medial axis vertex not just one boundary point but an entire
arc. We call this arc a concave corner or simply corner. It is readily available and involves
no differentiation, contrary to all previous work. We show there are advantages over the
common single-point approach.

There is no constraint as to which pairs of minima (corner points) are candidate as part-
cut endpoints, hence all prior work examines all possible pairs. On the contrary, as shown in
Fig. 1b, we only consider pairs of points that are projection points of the same point of the
interior medial axis (of the shape itself). Similarly to semi-ligatures [1] and single-minimum
cuts [17], a cut may also have only one corner point as endpoint [27]. In either case, end-
point pairs are readily available by a single traversal of the medial axis. Comparing to the
conventional definition, which requires part-cuts to cross an axis of local symmetry [26], this
is a stronger definition in agreement with the definition of necks [25]. Contrary to common
belief, we show that it can actually be in accordance to psychophysical evidence [5]. For
each corner, we only select one cut per medial axis branch; this is a simple and intuitive rule
that has not been observed before.

Now, given a candidate list of cuts, the short-cut rule [27] suggests that priority be given
to the shortest over all cuts incident to each corner point; but it does not specify how many
should be kept. On the other hand, convexity-based approaches attempt to find a minimal
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number of cuts such that each shape part is convex [23]. Clearly, a concave smooth boundary
curve segment would require an infinite partition, so convexity is only sought approximately.
But negative minima of curvature are points where the shape is locally maximally concave.
They are therefore the first points where one should establish convexity by cutting. Hence
we introduce a local convexity rule whereby the minimal number of cuts is selected such that
the interior angle of each part is less than 7 (up to tolerance) at each corner. Selection is
linear in the number of candidate cuts and again, all information is merely read-off from the
(exterior) medial axis. The final cuts are shown in Fig. Ic.

Structure. The remaining text is organized as follows. Our shape representation is given in
section 2, followed by a more detailed account of our decomposition method in section 3.
Experimental findings are presented in section 4 and conclusions are drawn in section 5.

2 Shape representation

A planar shape is a set X C R? whose boundary 9X is a finite union of mutually disjoint
simple closed curves, such that for each curve there is a parametrization « : [0, 1] — 90X by
arc length that is piecewise real analytic. The (Euclidean) distance map D(X) : X — Riis
a function mapping each point y € X to

D(X)(y) = inf |y~ . m
where || - || denotes the ¢2 norm. For y € R?, let
m(y) ={z € 0X : [ly — 2| = D(X)(2)} 2)

be the set of points on the boundary at minimal distance to y. This set is non-empty because
0X is closed in R? hence compact. It is called the projection [1] or contact set [4] of y on
the boundary; each = € w(y) is called a projection or contact point of y.

The (interior) medial axis

M(X) ={z e R? : |n(x)| > 1} 3)

is the set of points with more than one projection points. This set is a finite linear graph
embedded in R? [4]. Each edge of M (X)) is homeomorphic to the unit closed interval, and
each point z in an edge has exactly two projection points; a vertex is called an end vertex
(junction) if it has degree 1 (3 or higher). Assuming X is bounded, an end vertex is either
a convex vertex of X (point of discontinuity of &’ on X with interior angle less than 7) or
the center of an osculating circle inscribed in X with a connected projection that is either
one point or a circular arc; hence the curvature of « is positive and locally maximum at the
projection [4]. In this work, we also use the exterior medial axis of X, which is the medial
axis of its complement R? \ X. In this case an end vertex is either a concave vertex of X
(point of discontinuity of o’ on X with interior angle greater than 7) or the curvature is
negative and locally minimum at the projection.

In practice, we compute the distance map with any algorithm that provides at least one
representative of the projection 7(y) of each point [7], and then compute the medial axis
using the chord residue [2, 20]. Given two points =,y € 0X, the arc length ¢(z,y) is the
length of the minimal arc of X having z, y as endpoints or oo if no such arc exists. Now,
given a point z, its chord residue 7(2) = sup, ,er(.) (2, y) — ||z — yl| is the maximal
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(a) medial axis (b) concave corners

Figure 2: (a) Exterior and interior medial axes of shape #186 from S&V dataset [5].
Branches of the latter shown in random color. (b) Minima: exterior medial and concave
corners (in green, along with lines connecting vertices to their projection points).

difference between arc length and chord length over all pairs of points in its projection. The
residue is non-negative, attains a maximum at a single center point of each path component
of M(X), and is a non-increasing function of distance to the center point on M (X).

Construction of the medial axis begins at local maxima of the distance map and prop-
agates as long as the residue, measured between single-point projections of neighboring
points, is higher than a given threshold o > 0. Contrary to common misinterpretation [22],
this method is not constrained to polygons. It is very efficient, does not involve differentia-
tion e.g. of the distance map, preserves shape topology under mild assumptions (in particu-
lar, yields one connected component of the medial axis for each component of X'), and can
simplify (in a sense, prune) the medial axis by merely adjusting o, without simplifying the
curve 0X in any way. Typically, o is only 1-2 pixels just to remove discretization noise.
Unfortunately, it is constrained to two dimensions.

In the following, we assume that both the interior and exterior medial axes are available—
in fact, both are computed on a single traversal over a discrete representation of the input
shape X on a regular grid. For simplicity, we assume that for each point = of the medial
axis, the projection 7(x) contains exactly two points. In practice, only one projection point is
stored for each x; the second one is obtained from z’s neighbors. The arc length is computed
in constant time [20]. For the interior medial axis, we also parse its graph structure by a single
traversal; we refer to the edges of the graph as medial axis branches. Fig. 2a illustrates the
two medial axes and the branches found on the interior one for a sample shape that will also
serve as a running example in section 3 below.

3 Shape decomposition

A shape X is decomposed into parts by defining a set of part-cuts or simply cuts, as common
part boundaries. The cut endpoints, in turn, serve as boundaries between parts of 0X. In
some cases, cuts have been defined as curves, e.g. cubic splines, providing for continuation
of boundary tangents at end points [25]; but in most relevant work, as well as in the current
work, cuts are just line segments for simplicity [9, 26]. In either case, the cut endpoints
always lie on the boundary 0 X and the cuts lie entirely on the closure of X [26]. Additional
conditions apply as discussed below.

In this work, a large number of raw cuts is initially extracted by traversing the interior
medial axis; a short list of candidate cuts is selected by means of an equivalence relation,
and a final cut selection follows by seeking local convexity at each endpoint along with a
few simple salience measures. The entire decomposition process is detailed below.
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(a) full ligature (b) semi-ligature (c) sharp (d) weak

Figure 3: (a) Full ligature on x. (b) Semi-ligature on z,y (in white) [1]. (c) Two nearby
sharp concavities result in two different cuts [26]. (d) Two nearby weak concavities should
ideally result in one cut; this is possible if their locale [9] is known (in green).

Minima. According to the minima rule [8], the shape X should be cut at points of negative
minima of curvature of its boundary parametrization «. In the theory of limbs and necks [25],
this rule is taken to mean that both cut endpoints are such minima points. However, the rule
has been subsequently relaxed by requiring that at least one of each cut endpoints have neg-
ative curvature [27]. This condition is contained in the standard definition of part-cuts [26].
This is in agreement with the earlier theory of ligatures [1] and more recent studies [17]. In
particular, given a set of minima points C', a full(semi)-ligature [1] on two points z,y € C
(resp. one point z € () is the set of points z whose projection 7 (z) contains x, y (resp. « but
no other point of C'). Commonly referred to as ligatures, these sets are subsets of the medial
axis and disconnect it such that subsequent shape reconstruction produces a rough decom-
position into parts. They are illustrated in Fig. 3a,b. Accordingly, double(single)-minima
cuts [17] are defined as having both endpoints (resp. exactly one endpoint) in the minima set
C. We follow the same idea.

But how is the minima set C' exactly determined? All relevant studies assume a discrete
parametrization of shape boundary 0.X and compute negative minima of a discrete approxi-
mation of curvature. Apart from numerical sensitivity and the further assumption of a scale
parameter in every discrete derivative approximation, the limitation is that detected minima
are isolated points that provide no information on the spatial extent of concavities—referred
to as locale [9]—as illustrated in Fig. 3c,d. The background of section 2 specifies that end-
vertex projections of the exterior medial axis are either single points tangent to osculating
circles, or circular arcs. In practice, the two projection points determine a boundary arc that
always approximates a circular arc. We call this arc a concave corner or simply corner.
The radius of the circle is the inverse of the absolute curvature. The three points involved—
the end vertex and its two projection points—directly determine the position, spatial extent,
orientation and strength of the concavity, including both curvature and turning angle. All
information comes for free from the medial axis. Fig. 2b illustrates this idea.

Symmetry. Now potential cuts are determined by all pairs of points in two different corners.
Most relevant work actually examines all pairs [17, 25]. This is not only inefficient, but may
involve all sorts of new ad-hoc rules to resolve conflicts (e.g. that cuts do not intersect) as well
as solving an optimization problem. But the standard definition of part-cuts [26] includes the
additional condition that they cross an axis of local symmetry. We modify the condition such
that the cut endpoints are projection points of the same point of the interior medial axis (recall
that a cut lies in the shape). In most cases this is a stronger condition, but we observe that it
most often agrees with ground truth data from psychophysical experiments [5], as shown in
Fig. 4a-c. Combined with the minima rule, it implies that endpoints are exactly projection
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(a) local symmetry  (b) all subjects (c) majority (d) local convexity

Figure 4: (a) Example from Singh and Hoffman [26] illustrating that a cut across a local
symmetry axis fails to be captured by the medial axis or equivalently by the definition of
neck [25] because a circle cannot be inscribed. (b) A counter-example from ground-truth
data of DeWinter and Wagemans [5] where most subjects do not cut in a similar case (cuts of
all subjects overlaid in blue, 85% transparent). (c) Majority cuts of (b) (in blue) according to
clustering-based ensemble [12]; see section 4 for more details. (d) Measurement of interior
angles at a corner. Exterior medial vertex v and its projection points p;, p2 are known, hence
also the inward/outward orientations of the boundary—the lines joining v and p;, po are
normal to the boundary. By translating the two boundary segments starting at p;, po and the
cut starting at ¢ to the same origin (vertex v here), we measure the interior angles 61, 6 of
the two shape parts at this corner after cutting. Both are less than 7, while 61 + 65 is not.
Local convexity is achieved and there is no need for more cuts at this corner.

points of the same point of a ligature. So what we do in practice is, traverse the interior
medial axis once, and collect all pairs of projection points such that at least one lies in a
corner. Depending on the number of corners, we call the cuts double or single. The cuts
obtained this way are called raw cuts and illustrated in Fig. 5a. It is easily shown that they
do not intersect by construction.

Equivalence. Observing Fig. 5a, raw cuts are clearly too many, but they tend to appear in
groups. As shown Fig. 5b, we select a small number of candidate cuts before applying other
rules by defining two equivalence relations on cuts and selecting one representative from
each equivalence class. According to the first relation, corner equivalence, two (double) cuts
are equivalent if their endpoints lie on the same pair of corners. In this case, the representative
is chosen that maximizes the protrusion strength measure discussed below. The second,
branch equivalence, specifies that two cuts (double or single) are equivalent if they are on
the same branch and their endpoints share at least one corner; we say a cut is on a branch if
the medial axis point whose projection points are the cut endpoints lies on this branch.

This rule is intuitive and always maintains all correct cuts in our experiments. Observe
in Fig. 5b that whenever two groups of cuts are on the same corner but on two different
branches, there is also a junction and a third branch in the outward direction from the corner,
such that the shape is expanding between the two groups. Hence there should be a repre-
sentative from both cut groups. If there are both double-cuts and single-cuts in the same
equivalence class, the representative is always a double-cut. In either case, the representative
cut is chosen such that its endpoints are closest to the midpoint of the corner arc(s). This
rule is almost always superior to the short-cut rule. For instance, observe the cuts at the tail
in Fig. 5a,b and compare to Fig. 7b of De Winter and Wagemans [5].

Local convexity. Although the psychophysical evidence concerning convexity as a rule
for shape decomposition is limited, most recent studies are based on optimization targeting
approximate convexity. We rather avoid global optimization, not only for its complexity
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(a) raw cuts (b) candidate cuts (c) selected cuts

Figure 5: (a) Symmetry: all cuts (in red, 95% transparent) for the shape of Fig. 2, whose end-
points are projection points of the same interior medial axis point, with at least one endpoint
on a concave corner. (b) Equivalence: candidate cuts selected such that for each corner, there
is a single cut per medial axis branch (each shown in random color); priority is given to cuts
with both endpoints on corners, while representatives are selected such that endpoints are as
close as possible to the midpoint of the associated corner arc. (c) Cuts selected independently
at each corner by descending priority until local convexity is achieved; priority specified by
short-cut rule and other salience measures.

but also because according to robustness requirement [25], decomposition at a point should
only be affected by its local neighborhood, such that partial occlusion and part movement
do not affect the remaining parts. We observe that the minima rule is inherently related to
convexity, since boundary points of negative minima of curvature are in fact points where
the shape is locally maximally concave. We therefore select cuts independently at each
corner in order to achieve local convexity at the corner. In particular, for every corner, we
prioritize all cuts incident to the corner according to criteria discussed below, and we select
cuts by descending priority until the interior angle of all parts after cutting is less than 7 + 6,
where 6 is a tolerance. Measurement of interior angles is illustrated in Fig. 4d; once more,
all information is readily available from the medial axis. Selected cuts according to local
convexity and short-cut rule (see below) are illustrated in Fig. Sc.

Salience measures. Our local convexity rule selects the appropriate number of part-cuts
independently per corner but is otherwise completely agnostic to their prioritization. This
enables the use of arbitrary salience measures for cuts. Although there is no complete theory,
several such measures have been suggested as plausible, going back to at least Gestalt psy-
chologists [9, 26]. These refer to boundary strength at cut endpoints [9], including turning
angle for cusps and normalized curvature for smooth boundary, continuation of boundary
at endpoints [26], as well as of salience of cuts or parts themselves, including relative area,
protrusion [9], and cut length [27]. Studying their role is beyond the scope of this work. We
rather focus on a general framework that can easily incorporate any of these measures; all
are readily available in our representation with the exception of relative area. In practice,
we follow a minimal approach by only using cut length (shorter cuts are preferred) after first
discarding cuts with protrusion less than a given (inverse) threshold p. The latter is defined
as the ratio of cut length to the perimeter (arc length) of the part excluding the cut.

4 Experiments

4.1 Experimental setup

Datasets. In most related work [25], even in recent methods [16, 19, 30], evaluation is
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only qualitative, while quantitative evaluation is often limited to datasets that are not public
like arbitrary subsets of MPEG-7 shape dataset [18, 23]. To our knowledge, there are two
public datasets with ground-truth from human subjects [5, 15]. The former by Liu et al. is
focusing on the classification of holes as structurally important or topological noise, which
is a different problem. We use the latter by de Winter and Wagemans, which evaluates
exactly segmentation of object outlines. It is a subset of the Snodgrass and Vanderwart
(S&V) everyday object dataset [28], consisting of 260 line drawings. The subset refers to 88
of the drawings, which have been converted to smooth outlines and each segmented by 39,5
subjects (psychology students) on average. For each shape there are 122,4 part-cuts, that is
3,1 cuts per subject on average. The same dataset, referred to as S&V, has been subsequently
used for quantitative comparison of different computational models [12, 13, 17]. An example
illustrating the cuts of all subjects on a single outline is shown in Fig. 4b.

Majority voting. Because part-cuts of human subjects are typically inconsistent, it is com-
mon practice to perform some form of majority voting before using the ground-truth to eval-
uate a computational model [25]. There are different alternatives, which take the form of
either a majority decomposition by clustering [12, 15], or spatial density used directly for
evaluation [17]. We follow the framework of Lewin et al. [12]. In particular, given two cuts
¢1, co with endpoints {1, y1}, {22, y2 } respectively, their arc distance is defined as

d(c1, c2) = min{l(x1, x2) + Ly1, y2), €(z1,y2) + €(y1,22)}, @

where ¢ is the arc length function defined in section 2. Using this distance, cuts are subject
to average-linkage agglomerative clustering and a cluster is only kept if contains cuts from a
given proportion of the subjects. A representative cut is chosen from each cluster whose end-
points are averaged over the endpoints of individual cuts in the cluster, where averaging takes
place on the parametrization of the boundary curve. The result is a majority decomposition
per shape. An example is given in Fig. 4b,c.

Evaluation measures. Unfortunately, since quantitative evaluation is relatively new, there is
nearly one different protocol for every relevant publication. We use two different measures,
both of which assume a decomposition of shape X is represented by a partition A = {4;}
of X, where both X and each part A; are represented by sets of pixels in practice. The
Hamming distance [12] of partitions A, B is then

H(A, B) = ﬁ[hwm + h(B|A)), 5)

where | X | is the area of X in pixels, h(A|B) = >, |A; \ Bxr,| is the sum over all parts of A

of the area of part A; not covered by its best match B, in B, and the best match is defined
by m; = argmax; |A; N B,|. On the other hand, the Rand Index (RI) [15] of A, B, is

-1
RAB) = (3) (Pasl + 1P ©

where Py = {(wi,z;) € X% : j > i A A(z;) = A(zj) A B(z;) # B(x;)} are the
ordered pairs of pixels in X that are in the same part of A and in different parts of B, and
A(x;) is the part of A where pixel x; belongs. It is also referred to as Jaccard measure [12].
We evaluate against both individual human subjects by averaging per shape and to majority
decompositions.
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Compared methods. We perform quantitative comparison to approximate convex decom-
position (ACD) [14], discrete contour evolution (DCE) [11], combined skeleton-boundary
features (SB) [30], flow discretization (FD) [6], constrained morphological decomposition
(MD) [10] and clustering-based ensemble (CBE) [13]. Quantitative results on all methods
are used as provided by Lewin et al. [13], which propose their own ensemble method CBE.
The latter is in fact applying to all previous five methods the same clustering approach that is
also applied to human subject decompositions as part of majority voting; therefore it may be
considered as a meta-decomposition method. Our own method is referred to as medial axis
decomposition (MAD). We also compare to human subjects, evaluated individually against
their own average or majority [15], as well as to the baseline case of not cutting anywhere.
Qualitative results, apart from ground truth (GT), are additionally compared to relatability
(REL) [19], convex shape secomposition (CSD) [16], minimum near-convex decomposition
(MNCD) [23] and computational model of short-cut rule (CSR) [17].

0.11 ) average majority
= 10-32 H R | H R
5 0.105 -
g o8 = DCE [[0.208 0.497]0.188 0.466
f_% 0.1 -10.28 -“é SB 0.163 0.402|0.131 0.335
2 0.095 026 5 MD ||0.151 0.371|0.126 0.328
E 3 FD 0.145 0.350 | 0.112 0.267
g 0.09] > ~0.24 &
| 1 1 ! - 1 1 1 ACD 0.128 0.323]0.092 0.251
0.085 5515558505 022 MAD |[|0.126 0.317 [0.096 0.247
convexity tolerance, 6 (degrees) MAD-opt || 0.118 0.303 ] 0.085 0.225
H e p—03-—e_p—05—e_p=07 CBE [[0.111 0.288]0.069 0.186
B -©- p=03-©- p=05-0- p=07 Human [ 0.128 03120093 0245
Baseline || 0.160 0.424|0.140 0.376

Figure 6: Hamming (H') and RI (R) measures Table 1: Hamming () and RI (R)
vs. convexity tolerance 6 for varying protru-

' measures for average and majority
sion threshold p on S&V dataset.

voting on S&V dataset.

4.2 Results

Timing. Implemented in C++ and Matlab, MAD takes 78ms on average per S&V shape on
a single core, excluding medial axis preprocessing, which is 202ms on average.

Tuning. There are three parameters in MAD: medial scale threshold o, convexity tolerance
0, and (the inverse of) protrusion strength threshold p. After both quantitative tuning and
qualitative inspection, we choose 0 = 2. Fig. 6 shows quantitative results for different
configurations of 6, p. Performance is best for p = 0.3 (lower is better for both measures
H and R), while the optimal range for 6 is [45, 70] degrees. However, due to qualitative
inspection, we rather choose p = 0.45,60 = 40°. Discrepancies are attributed to limitations
of the measures used [15].

Quantitative evaluation. Table 1 compares our method to a number of relevant methods.
On most measurements, our method is outperforming all individual methods and very close
to or even better than human subjects. As a meta-method, CBE is the best, but is also
significantly more complex and involves all the other five methods shown in the Table. It is
expected to perform well since it applies to algorithms the same idea of majority voting that
is applied to human subjects at ground truth construction. Because parameters were chosen
mostly based on qualitative criteria, we also include for reference the optimal performance
obtained with p = 0.35,0 = 50° (MAD-opt), which is always better than human subjects
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Figure 7: Qualitative results on representative shapes of S&V [5] (left) and Kimia [25] (right)
datasets for a number of methods, including ground truth (GT), depicted as in Fig. 4c.

and not too far from CBE. All results are inferior on average evaluation against individual
subjects, which is expected as subjects are not always consistent. It is interesting that SB,
DCE are close to or even worse than the baseline of not cutting anywhere.

Qualitative evaluation. Fig. 7 illustrates qualitative results on a number of representative
shapes. Our method gives natural results on Kimia dataset and is the only one to capture
the ground truth for the bottom part of the rabbit correctly. It often tends to prefer cuts near
the mouth than on the neck. This is attributed to the shortcut rule which we observe is not
always enough, but our method is very open to using other measures. S&V is harder, but
still MAD yields the highest quality results comparing to the other individual methods. That
is, apart from the ensemble method CBE, which seeks consensus among all others.

5 Discussion

Both qualitative and quantitative evaluation suggests that an extremely simple computational
model based on an appropriate representation can be competitive comparing to more com-
plex models or ensemble methods. More than that, our model is inherently connected to
most rules suggested by human vision studies and highlights their connection. There are
more aspects that we have explored in the same model, which we have not been able to
expose here due to limited space, including an extended definition of concave corners that
captures semi-local boundary arcs and a proximity measure on part-cuts. Other aspects that
could be naturally incorporated are detection of bends, continuation of boundaries across
parts and local symmetry beyond what is captured by the medial axis. The fact that part-cut
selection is based on simple local decisions will enable the investigation of a more general
model beyond closed curves towards local feature detection on arbitrary natural images. For
instance, bitangents on isophotes (level sets of intensity) [21] can be seen as cuts on either
figure or ground shape, while distance map saddle points [2] correspond to necks [25]; our
work can provide for a richer set of cuts hence candidate local features.
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