
High-dimensional visual similarity search: k-d Generalized
Randomized Forests

[Extended Abstract]
∗

Yannis Avrithis
Department of Informatics &

Telecommunications
University Of Athens

Athens, Greece
iavr@image.ntua.gr

Ioannis Z. Emiris
†

Department of Informatics &
Telecommunications
University Of Athens

Athens, Greece
emiris@di.uoa.gr

Georgios Samaras
Department of Informatics &

Telecommunications
University Of Athens

Athens, Greece
gsamaras@di.uoa.gr

ABSTRACT
We propose a new data-structure, the generalized random-
ized k-d forest, or k-d GeRaF, for approximate nearest neigh-
bor searching in high dimensions. In particular, we intro-
duce new randomization techniques to specify a set of in-
dependently constructed trees where search is performed
simultaneously, hence increasing accuracy. We omit back-
tracking, and we optimize distance computations. We re-
lease public domain software GeRaF and we compare it to
existing implementations of state-of-the-art methods. Ex-
perimental results on SIFT and GIST visual descriptors, in-
dicate that our method is the method of choice in dimen-
sions around 1,000, and probably up to 10,000, and datasets
of cardinality up to a few hundred thousands or even one
million. For instance, we handle a real dataset of 106 GIST
images represented in 960 dimensions with a query time of
less than 1 sec on average and 90% responses being true
nearest neighbors.

CCS Concepts
•Information systems → Nearest-neighbor search;
•Computing methodologies → Visual content-based
indexing and retrieval;

Keywords
randomized tree, space partition, image search, high dimen-
sion, open software, GIST images

∗A full version of this paper is available at
http://arxiv.org/pdf/1603.09596v1.pdf
†Partially supported by a bilateral collaboration with IN-
RIA Sophia-Antipolis (France) funded by the Department
of Informatics & Telecoms.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

1. INTRODUCTION
Nearest Neighbor Search remains a fundamental optimiza-

tion problem with both theoretical and practical open is-
sues today, in particular for large datasets in dimension well
above 100. An exact solution using close to linear space and
sublinear query time is impossible, hence the importance of
approximate search, abbreviated NNS. Given a finite dataset
X ⊂ Rd and real ε > 0, x∗ ∈ X is an ε-approximate nearest
neighbor of query q ∈ Rd, if dist(q, x∗) ≤ (1 + ε)dist(q, x)
for all x ∈ X. For ε = 0, this reduces to exact NNS.

High-dimensional NNS arises naturally when complex ob-
jects are represented by vectors of d scalar features. NNS
tends to be one of the most computationally expensive parts
of many algorithms in a variety of applications, including
computer vision, pattern recognition and classification, mul-
timedia databases, knowledge discovery and data mining,
machine learning, document retrieval and statistics [4, 5].
Large scale problems are quite common in such areas, for
instance > 107 points and > 105 dimensions.

Previous work. There are many efficient approaches to NNS.
We focus on the most competitive ones, with emphasis on
practical performance, in particular for applications in image
similarity search. An important class of methods consists
in data-dependent methods, where the decisions taken for
space partitioning are based on the given data points. The
Balanced Box Decomposition (BBD) tree [3] is a variant of
the quadtree. It subdivides space into axis-aligned hyper-
rectangles. The implementation in library ANN [6] seems to
be the most competitive method, for roughly d < 100.

A successful contribution has been library FLANN [7, 8];
the method has been most successful on SIFT image de-
scriptors with d = 128. FLANN constructs a forest of up to 6
randomized k-d trees and performs simultaneous search in
all trees. It chooses the split coordinates adaptively but all
leaves contain a single point. The implementation adopts
some optimization techniques, such as unrolling the loop of
distance computation, but our software goes significantly
further in this direction.

In high dimensional space, tree-based data structures are
affected by the curse of dimensionality. One option by [1] is
to perform dimension reduction and use BBD trees on the
reduced space. Another option is Locality Sensitive Hashing
(LSH); the idea of LSH is to hash the points of the data set so
as to ensure that the probability of collision is much higher

for objects that are close to each other than for those that are
far apart. One implementation that we use for comparisons
is in library E2LSH [2].

A different hashing approach is to represent points by
short binary codes to approximate and accelerate distance
computations. There are several recent extensions, and the
current state of the art in up to 109 points in 128 dimensions
is locally optimized product quantization (LOPQ) [5].

Contribution. Our main contribution is to propose a new,
randomized data-structure for high dimensional NNS, namely
the k-dGeneralized Randomized Forest (k-d GeRaF1), which
generalizes the k-d tree. We employ adaptive and random-
ized algorithms for choosing the split coordinate, and further
randomization techniques to build a number of independent
k-d trees. We also provide automatic configuration of the pa-
rameters The number of trees depends on the input and may
go up to the tens or hundreds. We examine alternative ideas,
such as random shuffling of the points, random isometries,
leaves with several points, and methods for accelerating dis-
tance computation. By keeping track of encountered points,
we avoid repeated computations [8]. We analyze the theo-
retical and practical aspects of our approach with emphasis
on the experimental analysis for image data.

We have experimented with parameters of all methods
and observed the difficulty, in general, to optimize them.
Automatic configuration works well for GeRaF, which has
the fastest building time. GeRaF also scales very well, even
for d = 104 or n = 106, and, at the same accuracy, it is faster
than competition for d roughly in the range (103, 104), and
n in the hundreds of thousands or millions.

2. THE k-d GeRaF
The limitations of a single k-d tree for high d are over-

come by searching multiple, randomized trees, simultane-
ously. Overall, m different randomized k-d trees are built,
each with a different structure such that search in the dif-
ferent trees is independent; i.e., neighboring points that
are split by a hyperplane in one, are not split in another.
Search is simultaneous in the m trees, i.e., nodes from all
trees are visited in an order determined by a shared prior-
ity queue. There is no backtracking, and search terminates
when c leaves are visited.

2.1 Randomization
The key insight is to construct substantially different trees,

by randomization. Multiple independent searches are sub-
sequently performed, increasing the probability of finding
approximate nearest neighbors. Randomization amounts to
either generating a different randomly transformed pointset
per tree (e.g ., rotation or shuffling), or choosing splits at
random at each node (e.g ., split dimension or value). As
discussed below, we investigate four randomization factors.

Rotation. For each k-d tree, we randomly rotate the input
pointset or, more generally, apply a different isometry [10].
Each resulting tree is thus based on a different set of dimen-
sions. During search, the query is rotated before descending
each tree. However, distances are computed between the
original stored points and the original query.

Split dimension. In a conventional k-d tree, the pointset
is halved at each node along one dimension; dimensions are

1https://github.com/gsamaras/kd GeRaF

Algorithm 1: k-d GeRaF: building

input : pointset X, #trees m, #split-dimensions t,
max #points per leaf p

output: randomized k-d forest F
1 begin
2 V ← 〈variance of X in every dimension〉
3 D ← 〈t dimensions of maximum variance V 〉
4 F ← ∅ . forest
5 for i← 1 to m do
6 f ← 〈random transformation〉 . isometry,

shuffling
7 F ← F ∪ (f,build(f(X))) . build on

transformed X, store f

8 return F

9 function build(X) . recursively build tree (node/leaf)
10 if |X| ≤ p then . termination reached
11 return leaf (X)

12 else . split points and recurse
13 s← 〈one of dimensions D at random〉
14 v ← 〈median of X in dimension s〉
15 (L,R)← 〈split of X in dimension s at value v〉
16 return node(c, v,build(L),build(R)) . build

children on L,R

examined in order even for high d. Here, we find the t dimen-
sions of highest variance for the input set and then choose
uniformly at random one of these t dimensions at each node.
Thus, different trees are built from the given pointset.

Split value. The default split value in a conventional k-d tree
is the median of the coordinates in the selected split dimen-
sion. FLANN uses the mean for reasons of speed. Here, we
compute the median, which would yield a perfect tree, and
then randomly perturb it [9]. In particular, the split value
equals the median plus a quantity δ uniformly distributed in
[−3∆/

√
d, 3∆/

√
d], where ∆ is the diameter of the current

pointset; δ is computed at every node during building [11].

Shuffling. When computing the split value at each node in
a conventional k-d tree, the current pointset at the node is
used, which is a subset of the original pointset. Even if the
split value is randomized, it is still possible that the same
point is chosen if the same coordinate value occurs more
than once in the selected dimension. This is particularly
common when points are quantized; for instance, SIFT vec-
tors are typically represented by one byte per element. We
thus randomly shuffle points at each tree. Hence, different
splits occur despite ties.

2.2 Building
The overall building algorithm for k-d GeRaF, consisting

of m trees, is outlined in Alg. 1. For simplicity, only the
random split dimensions are included, while the split value
is the standard median. There is a random data transfor-
mation f per tree, which may include either an isometry,
shuffling, or both; in case of an isometry, it is stored for use
during search.

Given a dataset X, the t dimensions of maximum vari-
ance, say D, are computed. For each tree, X is transformed
according to a different function f and then the tree is built

recursively. At each node, one dimension (coordinate), say
s, is chosen uniformly at random from D and X is split at
the median in s. The two subsets of X, say L,R, are then
recursively given as input datasets to the two children of the
node. The split node so constructed contains the split di-
mension s and the split value v. Splitting terminates when
fewer than p points are found in the dataset, in which case
the point indices are just stored in a leaf node. When n is
much higher than d, the bottleneck of the algorithm is find-
ing the median, which is O(n) on average. Otherwise, the
bottleneck is computing the variance per dimension, which
is O(d). The space requirement for the entire data struc-
ture is O(nd) for the data points and O(nm) for the trees,
including both nodes and indices to points, for a total of
O(n(d+m)).

Each random isometry can be a rotation [11] or reflec-
tion, and in general requires the generation of a random
orthogonal matrix R. We rather use an elementary House-
holder reflector P for efficiency [10]. In particular, given
unit vector u ∈ Rd normal to hyperplane H, the orthogonal
projection of a point x onto H is x− (u>x)u. Its reflection
across H is twice as far from x in the same direction, that
is, y = x − 2(u>x)u = Px, where P = I − 2uu>. Although
P is orthogonal, the computation of reflection Px is O(n),
involving a dot product and an element-wise multiplication
and addition. This is because uu> is of rank one. We only
need to store vector u for each tree.

2.3 Searching
Searching takes place in parallel in all trees; this does not

refer to independent search per tree, but rather that nodes
from all trees are visited in a particular order using a shared
min-priority queue Q. The idea is that given a bound c on
the total leaves to be checked, the query iteratively descends
the most promising nodes from all trees, and the criterion
is the distance of the query to the hyperplane specified by
each node.

A shown in Alg. 2, the query initially descends all trees
of forest F while all visited nodes are stored in Q, without
checking any leaves. Then, for each node extracted from Q,
the query descends again, this time computing distances to
all points in the leaf. For each decision made at a node while
descending, the other one is stored in Q. In particular, the
signed distance d = N.dist(q) of query q to the hyperplane
specified by node N is

N.dist(q) = N.tree.f(q)N.c −N.v (1)

where N.tree.f is the isometry of the tree where N belongs,
and N.c, N.v are the split dimension (coordinate) and value
of N , respectively. We descend to a child of N , chosen ac-
cording to the sign of d, and the other child is stored in Q
with the absolute distance |d| as key.

Results are stored in a min-heap H that holds up to k
points, where k is the number of neighbors to be returned.
For each leaf visited, the distance between q and all points
stored in the leaf is computed. For each point Xi of the
dataset X, H is updated dynamically such that it always
contains the k nearest neighbors to q. The key used for H
is the computed (squared) distance ‖q − Xi‖2. A separate
array keeps track of points encountered so far, such that no
distance is computed twice.

For each tree built under isometry f , the transformed
query f(q) is used in all tests at internal nodes, but the ini-

Algorithm 2: k-d GeRaF: searching.

input : query point q, forest F , #neighbors k, max
#leaf-checks c

output: k nearest points
1 begin
2 Q.init() . min-priority queue, initially empty
3 for i← 1 to m do
4 descend(q, F [i], false) . descend i-th tree,

store path in Q, no checks

5 `← 0 . # of leaves checked
6 H.init(k) . min-heap of size k
7 while ¬Q.empty() ∧ ` < c/(1 + ε) do
8 (N, d)← Q.extract-min() . (node, distance)
9 descend(q,N,true) . descend again, but check

leaves now
10 `← `+ 1 . increase leaves checked

11 return H

12 function descend(q,node N, check) . descend node N
for query q

13 d← N.dist(q) . signed distance to boundary
14 if d < 0 then . q is in negative half-space
15 Q.insert(N.right, |d|) . remember right child
16 descend(q,N.left, check) . descend left child

17 else
18 Q.insert(N.left, |d|) . and vice versa
19 descend(q,N.right, check)

20 function descend(q, leaf N, check) . test query q on
leaf N

21 if ¬check then return;
22 for i ∈ N.points do
23 H.insert(i, ‖q −Xi‖2) . distances to points Xi

in leaf N

tial query q is rather used in all distance computations with
points stored at leaves. Similarly, the transformed dataset
is used only for building the tree but is not stored. This is
possible since the isometry leaves distances unaffected. In
practice, unlike (1), the query is transformed according to
isometries of all trees prior to descending.

3. EXPERIMENTS
This section presents our experimental results and com-

parisons on a number of synthetic (Klein bottle) and real
datasets (SIFT and GIST). Most experiments use the de-
fault parameters provided by existing implementations but,
on specific inputs, we have optimized the parameters man-
ually. Preprocessing includes building, but for FLANN and
GeRaF it also includes automatic parameter configuration.
Build time is related to the required precision as expressed
by ε. For LSH, ε is failure probability and its build time is the
most sensitive to ε. Despite requesting the user to manually
determine parameter R, LSH performs an automatic param-
eter configuration as well, which is included in the building
process. During search, the miss rate is the percentage of
queries where the reported neighbor is not the exact one.

Both Table 2 and Figure 1 show that GeRaF is typically
faster than LSH by at least an order of magnitude at the
same accuracy. BBD and FLANN have problems, namely they

Klein n = 104, d = 102 SIFT n = 106, d = 128
ε 0 0.1 0.5 0.9 0 0.1 0.5 0.9

BBD 0.13 0.14 0.17 0.14 – – – –
LSH 0.11 0.07 0.03 0.05 – – 170.1 145.5
FLANN – – – – 20 19.2 19.8 19.7
GeRaF 0.06 0.06 0.06 0.08 62.6 93.6 90.5 96.0

Table 1: Build time (s) for two representative
datasets. FLANN does not finish after 4 hr, which is
indicated by ‘–’ on Klein bottle or build times in
gray on SIFT, where we have skipped configuration
and used default values. BBD runs out of memory on
SIFT, as well as LSH for ε = 0, 0.1.

ε
miss % search (µsec)

BBD LSH FLANN GeRaF BBD LSH FLANN GeRaF

0.0 0 1 – 2 0.470 2.700 – 0.100
0.1 59 1 – 3 0.043 2.400 – 0.083
0.5 59 20 – 3 0.046 1.900 – 0.083
0.9 59 63 – 5 0.052 0.850 – 0.070

Table 2: Search accuracy and times for Klein n =
104, d = 102. Queries are nearly equidistant to points,
which explains high miss rates, especially for BBD and
FLANN; ‘–’ indicates preprocessing does not finish af-
ter 4 hr.

suffer from either running out of memory or not completing
automatic-parameters build (we had to manually input pa-
rameters in some cases). Table 3 displays, for all methods,
the miss rate and search time as a function of n or d when
the other parameter is fixed. In cases where miss rate is
not 100%, GeRaF is an order of magnitude faster. The only
exception is d = 100, where the situation is inversed with
FLANN.

4. CONCLUSION
We provide a simple but effective automatic parameter

configuration that yields the fastest preprocessing, includ-
ing both configuration and building, as well as a success-
ful trade-off between accuracy and speed. Most competing
methods have difficulties, namely they suffer from running
out of memory at large scale, slow or non-terminating pa-
rameter configuration, or unstable search behavior.

An interesting and relevant feature is that GeRaF appears
to exploit intrinsic structure in the input, such as the struc-
ture of SIFT image datasets or the Klein bottle. The work
in [11] may pave the way for explaining this behavior.

5. REFERENCES
[1] E. Anagnostopoulos, I. Emiris, and I. Psarros.

Low-quality dimension reduction and high-dimensional
approximate nearest neighbor. In Proc. Annual Symp.
on Computational Geometry, pages 436–450, 2015.

[2] A. Andoni and P. Indyk. E2LSH 0.1 User Manual,
Implementation of LSH: E2LSH,
http://www.mit.edu/ ∼andoni/LSH, 2005.

[3] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and
A. Wu. An optimal algorithm for approximate nearest
neighbors in fixed dimension. J.ACM, 45:891–923,
1998.

[4] H. Jégou, M. Douze, and C. Schmid. Product
quantization for nearest neighbor search. IEEE Trans.

0 20 40 60 80

10−4

10−3

10−2

10−1
0.5

0.9

0-0.9

0
0.10.5

0.9

miss %

LSH

FLANN

GeRaF

0 50 100

10−2

10−1

100
00.1-0.9

0

0.1-0.9

0

0.1
0.9

miss %

(c) SIFT n = 106, d = 128 (d) GIST n = 106, d = 960

Figure 1: Search accuracy (miss rates) and runtimes
(sec) on real datasets. Numbers over points are the
values of ε. In both cases, BBD is out of memory and
FLANN does not preprocess after 4 hr for any ε, thus
we configured its parameters manually.

n d
miss % search (µsec)

BBDLSHFLANNGeRaFBBD LSHFLANNGeRaF

103

100 100 0 16 0 1 212 12 199
1000 100 50 100 50 5 1850 34 14
5000 100 0 100 0 39 8675 149 122
10000 100 37 100 227617000 289 520

1000
103

100 50 100 50 5 1850 34 14
10000 100 0 100 0 5 1780 – 390
100000 100 8 100 0276 – –10900

Table 3: Klein bottle search for ε = 0.1, for varying
n or d, where the other parameter is fixed. Search
times in gray represent failure cases where miss rate
is 100%. Queries are nearly equidistant from the
points, which explains high miss rates. ‘–’ indicates
preprocessing does not finish after 2 hr.

Pattern Analysis & Machine Intell., 33(1):117–128,
2011.

[5] Y. Kalantidis and Y. Avrithis. Locally optimized
product quantization for approximate nearest neighbor
search. In Comp. Vision & Pattern Recogn., 2014.

[6] D. M. Mount and S. Arya. Ann: A library for
approximate nearest neighbor searching,
https://www.cs.umd.edu/ mount/ann/, 2010.

[7] M. Muja and D. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
Proc. VISAPP: Intern. Conf. Computer Vision
Theory & Appl., pages 331–340, 2009.

[8] M. Muja and D. Lowe. Scalable nearest neighbour
algorithms for high dimensional data. Pattern
Analysis and Machine Intelligence, 2014.

[9] J. Philbin, O. Chum, M. Isard, J. Sivic, and
A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In Proc. Computer Vision
& Pattern Recogn, 2007.

[10] C. Silpa-Anan and R. Hartley. Optimised kd-trees for
fast image descriptor matching. In Proc. IEEE
Computer Vision & Pattern Recognition, 2008.

[11] S. Vempala. Randomly-oriented kd-trees adapt to
intrinsic dimension. In Proc. Foundations Software
Techn. & Theor. Comp. Science, pages 48–57, 2012.

