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Abstract Exploiting local feature shape has made geom-
etry indexing possible, but at a high cost of index space,
while a sequential spatial verification and re-ranking stage
is still indispensable for large scale image retrieval. In this
work we investigate an accelerated approach for the latter
problem. We develop a simple spatial matching model in-
spired by Hough voting in the transformation space, where
votes arise from single feature correspondences. Using a his-
togram pyramid, we effectively compute pair-wise affinities
of correspondences without ever enumerating all pairs. Our
Hough pyramid matching algorithm is linear in the number
of correspondences and allows for multiple matching sur-
faces or non-rigid objects under one-to-one mapping. We
achieve re-ranking one order of magnitude more images at
the same query time with superior performance compared
to state of the art methods, while requiring the same index
space. We show that soft assignment is compatible with this
matching scheme, preserving one-to-one mapping and fur-
ther increasing performance.

1 Introduction

Sub-linear indexing of appearance has been possible with
the introduction of discriminative local features and descrip-
tor vocabularies [33]. Despite the success of the bag of words
model, spatial matching is still needed to boost performance,
especially at large scale. Geometry indexing is still in its in-
fancy, either being limited to weak constraints [ 7], or hav-
ing high index space requirements [2]. A second stage of
spatial verification and geometry re-ranking is the de facto
solution of choice, where RANSAC approximations domi-
nate. Re-ranking is linear in the number of images to match,
hence its speed is crucial.

Address(es) of author(s) should be given

Exploiting local shape of features (e.g. local scale, ori-
entation, or affine parameters) to extrapolate relative trans-
formations, it is either possible to construct RANSAC hy-
potheses by single correspondences [27], or to see corre-
spondences as Hough votes in a transformation space [23].
In the former case one still has to count inliers, so even with
fine codebooks and almost one correspondence per feature,
the process is quadratic in the number of (tentative) cor-
respondences. In the latter, voting is linear in the number
of correspondences but further verification with inlier count
appears unavoidable.

Flexible spatial models are more typical in recognition;
these are either not invariant to geometric transformations,
or use pairwise constraints to detect inliers without any rigid
motion model [21]. The latter are at least quadratic in the
number of correspondences and their practical running time
is still prohibitive if our target for re-ranking is thousands of
matches per second.

We develop a relaxed spatial matching model, which,
similarly to popular pyramid match approaches [13], dis-
tributes correspondences over a hierarchical partition of the
transformation space. Using local feature shape to generate
votes, it is invariant to similarity transformations, free of
inlier-count verification and linear in the number of corre-
spondences. It imposes one-to-one mapping and is flexible,
allowing non-rigid motion and multiple matching surfaces
or objects. This model is compatible with soft assignment of
descriptors to multiple visual words, preserving one-to-one
mapping and further increasing performance.

Fig. 1 compares our Hough pyramid matching (HPM)
to fast spatial matching (FSM) [27]. Both the foreground
object and the background are matched by HPM, following
different motion models; inliers from one surface are only
found by FSM. We show experimentally that flexible match-
ing outperforms RANSAC-based approximations under any
fixed model in terms of precision. But our major achieve-
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Fig. 1 Top: Inliers found by 4-dof FSM and affine-model LO-
RANSAC for two images of Oxford dataset. Bottom: HPM matching,
with all tentative correspondences shown. The ones in cyan have been
erased. The rest are colored according to strength, with red (yellow)
being the strongest (weakest).

ment is speed: in a given query time, HPM can re-rank one
order of magnitude more images than the state of the art in
geometry re-ranking. We give a more detailed account of our
contribution in section 2 after discussing in some depth the
most related prior work.

2 Related work

Given a number of correspondences between a pair of im-
ages, RANSAC [12], along with various approximations,
is still one of the most popular spatial verification meth-
ods. It uses as evidence the count of inliers to a geomet-
ric model (e.g. homography, affine, similarity). Hypotheses
are generated on random sets of correspondences, depend-
ing on model complexity. However, its performance is poor
when the ratio of inliers is too low. Philbin ez al. [27] gener-
ate hypotheses from single correspondences exploiting local
feature shape. Matching then becomes deterministic by enu-

merating all hypotheses. Still, this process is quadratic in the
number of correspondences.

Consistent groups of correspondences may first be found
in the transformation space using the generalized Hough
transform [3]. This is carried out by Lowe [23], but only
as a prior step to verification. Tentative correspondences are
found via fast nearest neighbor search in the descriptor space
and used to generate votes in the transformation space. Cor-
respondences are single, exploiting local shape as in [27].
Using a hash table, mapping to Hough bins is linear in the
number of correspondences and performance depends on the
number rather than the ratio of inliers. Still, multiple groups
need to be verified for inliers and this may be quadratic in
the worst case.

Leibe et al. [20] propose a probabilistic extension of the
generalized Hough transform for object detection. In their
voting scheme, observed visual words vote for object hy-
potheses based on their position relative to the object center.
Votes in this case come from a number of training images,
rather than a single matched image. Feature orientation is
not taken into account so the method is not rotation invari-
ant, but the principle is the same.

Jégou et al. [17] use a weaker geometric model whereby
groups of correspondences only agree in their relative scale
and—independently—orientation. Feature correspondences
are found using a visual vocabulary. Scale and orientation
of local features are quantized and stored in the inverted file.
Hence, geometric constraints are integrated in the filtering
stage of the search engine. However, because constraints
are weak, this model does not dispense with geometry re-
ranking after all.

In an attempt to capture information on the neighbor-
hood of local features, MSER regions are employed to group
features into bundles in [37]. Consistency between orderings
of bundled features is used for geometric matching. How-
ever, the reference frame of the MSER regions is not used
and features are projected on image axes instead, so rotation
invariance is lost. The same weakness applies to Zhou et
al. [39], who binarize spatial relations between pairs of local
features. Similarly, Cao et al. [7] order features according to
linear and circular projections, but rely on a training phase
to learn the best spatial configurations.

Global feature geometry is integrated in the indexing
process by Avrithis et al. [2]. A feature map is constructed
for each feature, encoding positions of all other features in
a local reference frame, similarly to shape context [5]. Re-
ranking is still used, though it is much faster in this case.
The additional space requirements for each feature map are
reduced by the use of hashing, but it is clear that this ap-
proach does not scale well.

Closely related to our approach is the work of Zhang
et al. [38], who set up a 2D Hough voting space based on
relative displacements of corresponding features. Fixed size
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bins incur quantization loss, while the model supports trans-
lation invariance only. Likewise, Shen et al. [32] apply sev-
eral scale and rotation transformations to the query features
and produce a 2D (translation) voting map for each database
image. Queries are costly, both in terms of time and space
needed for voting maps.

Whenever a single hypothesis may be generated by a
single correspondence, Hough-based approaches are prefer-
able to RANSAC-based ones, because they are nearly in-
dependent of the ratio of inliers and need to verify only
a subset of hypotheses. However, both share the use of a
fixed geometric model and need a parameter in verifying a
hypothesis, e.g. bin size for Hough, or inlier threshold for
RANSAC. Although there are attempts for parameter-free
methods [29], an entirely different approach is to use flexi-
ble models, which is typical for recognition. In this case con-
sensus is built among hypotheses only, operating on pairs of
correspondences.

For instance, multiple groups of consistent correspon-
dences are identified with the flexible, semi-local model of
Carneiro and Jepson [8], employing pairwise relations be-

tween correspondences and allowing non-rigid deformations.

Similarly, Leordeanu and Hebert [21] build a sparse adja-
cency (affinity) matrix of correspondences and greedily re-
cover inliers based on its principal eigenvector. This spectral
model can additionally incorporate different feature map-
ping constraints like one-to-one.

One-to-one mapping is maybe reminiscent of early cor-
respondence methods on non-discriminative features, but can
be very important when vocabularies are small, under the
presence of repeating structures, or e.g. with soft assignment
models [28]. Enqvist et al. [11] form a graph with corre-
spondences as vertices and inconsistencies as edges. One-
to-one mapping is easily incorporated by having multiple
matches of a single feature form a clique on the graph. In
contrast, we form a graph with features as vertices and cor-
respondences as edges. Multiple matches then form a con-
nected component of the graph.

Other solutions include for instance the early spectral
approach by Scott and Longuet-Higgins [3 1], the quadratic
programming approximation by Berg et al. [6], the context
dependent kernel by Sahbi et al. [30], and the linear pro-
gramming formulation by Jiang and Yu [18]. Most flexible
models are iterative and at least quadratic in the number of
correspondences. They are invariant to geometric transfor-
mations and resistant to ambiguous feature correspondences
but not necessarily robust to outliers.

Relaxed matching processes like the one of Vedaldi and
Soatto [36] offer an extremely attractive alternative in terms
of complexity by employing distributions over hierarchical
partitions instead of pairwise computations. The most pop-
ular is by Grauman and Darell [13], who map features to a
histogram pyramid in the descriptor space, and then match

them in a bottom-up process. The benefit comes mainly from
approximating similarities by bin size. Lazebnik et al. [19]
apply the same idea to image space but in such a way that
geometric invariance is lost. Attempts to handle partial sim-
ilarity usually resort to optimization methods like [22].

It should be noted that although a pyramid is a way to in-
crease robustness over flat histograms, it is still approximate
as correspondences may be lost at quantization boundaries,
even at coarse levels. The effect has been analyzed in [14],
where it has been shown that empirical distortion is substan-
tially lower than the theoretical upper bound.

3 Contribution

While the above relaxed methods apply to two sets of fea-
tures, we rather apply the same idea to one set of corre-
spondences (feature pairs) and aim at grouping according
to proximity, or affinity. This problem resembles mode seek-
ing [9][35], but our solution is a non-iterative, bottom-up
grouping process that is free of any scale parameter. We rep-
resent correspondences in the transformation space exploit-
ing local feature shape as in [23], but we form correspon-
dences using a vocabulary as in [27][17] rather than nearest
neighbors in descriptor space. Like pyramid match [13], we
approximate affinity by bin size, without actually enumerat-
ing correspondence pairs.

We impose a one-to-one mapping constraint such that
each feature in one image is mapped to at most one fea-
ture in the other. Indeed, this makes our problem similar
to that of [21], in the sense that we greedily select a pair-
wise compatible subset of correspondences that maximize
a non-negative, symmetric affinity matrix. However we al-
low multiple groups (clusters) of correspondences. Contrary
to [11][21], our voting model is non-iterative and linear in
the number of correspondences.

To summarize our contribution, we derive a flexible spa-
tial matching scheme whereby all tentative correspondences
contribute, appropriately weighted, to a similarity score be-
tween two images. What is most remarkable is that no verifi-
cation, model fitting or inlier count is needed as in [23], [27]
or [8]. Besides significant performance gain, this yields a
dramatic speed-up. Our result is a very simple algorithm
that requires no learning and can be easily integrated into
any image retrieval process.

Our Hough pyramid matching has been introduced in [34].
In this work, we extend our matching algorithm to account
for soft assignment of visual words on the query side, pro-
viding an alternative solution to enforce one-to-one map-
ping. We further study the distribution of votes in the trans-
formation space and derive a non-uniform space quantiza-
tion scheme turning out to a considerable speed-up while
leaving performance almost unaffected. We give more de-
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tails on the matching processing itself, more examples, and
a number of additional experiments and comparisons.

4 Problem formulation

In a nutshell, we are looking for one or more transforma-
tions that will make parts of one image align to parts of an-
other. A number of transformation models is possible, but
we choose to develop our method for similarity, i.e. a four
parameter transformation consisting of translation, rotation
and scale. Starting with our image representation, we for-
malize our goal as an optimization problem below.

We assume an image is represented by a set P of local
features, and for each feature p € P we are given its de-
scriptor, position and local shape. We restrict discussion to
scale and rotation covariant features, so that the local shape
and position of feature p are given by the 3 x 3 matrix

F(p) = %(Tp) t(f)] , M

where M(p) = o(p)R(p) and o(p), R(p),t(p) stand for
isotropic scale, orientation and position, respectively. R(p)
is an orthogonal 2 x 2 matrix with det R(p) = 1, represented
by an angle 6(p). In effect, F'(p) specifies a similarity trans-
formation with respect to a normalized patch e.g. centered
at the origin with scale o0y = 1 and orientation 6y = 0.

Given two images P, (), an assignment or correspon-
dence ¢ = (p,q) is a pair of features p € P,q € Q. The
relative transformation from p to ¢ is again a similarity trans-
formation given by

Flo = Fore " = o ). @

where M(c) = o(c)R(c), t(c) = t(q) — M(c)t(p); and
o(c) = a(q)/o(p), R(c) = R(q)R(p)~! are the relative
scale and orientation respectively from p to ¢. This is a 4-
dof transformation represented by a parameter vector

f(C) = (m(c),y(c), 0(0)7 9(0))7 (3)

where [z(c) y(c)]T = t(c) and 6(c) = 6(q) — 0(p). Hence
assignments can be seen as points in a d-dimensional trans-
formation space F; d = 4 in our case, while affine-covariant
features would have d = 6.

An initial set C' of candidate or tentative corresponden-
ces is constructed according to proximity of features in the
descriptor space. There are different criteria, e.g. by nearest
neighbor search given a suitable metric, or using a visual
vocabulary (or codebook). Here we consider the simplest
vocabulary approach where two features correspond when
assigned to the same visual word:

C={(p.q) € PxQ:ulp) =ulq}, “)

where u(p) is the visual word (or codeword) of p. This is a
many-to-many mapping; each feature in P may have multi-
ple assignments to features in (), and vice versa. Given as-
signment ¢ = (p, q), we define its visual word u(c) as the
common visual word u(p) = u(q).

Each correspondence ¢ = (p,q) € C'is given a weight
w(c) measuring its relative importance; we typically use the
inverse document frequency (idf) of its visual word. Given
a pair of assignments ¢, ¢’ € C, we assume an affinity score
a(c, ¢’) measures their similarity as a non-increasing func-
tion of their distance in the transformation space. Finally,
we say that two assignments ¢ = (p,q), ¢ = (p/,¢') are
compatible if p # p’ and q # ¢, and conflicting otherwise.
For instance, ¢, ¢’ are conflicting if they are mapping two
features of P to the same feature of Q.

Our problem is then to identify a subset of pairwise com-
patible assignments that maximizes the sum of the weighted,
pairwise affinity over all assignment pairs. This subset of
C determines an one-to-one mapping between inlier fea-
tures of P, @), and the maximum value is the similarity score
between P, (). It can be easily shown that this is a binary
quadratic programming problem [25] and we only target a
very fast, approximate solution. In fact, we want to group
assignments according to their affinity without actually enu-
merating pairs.

The spectral matching (SM) approach of [21] is an ap-
proximate solution where the binary constraint is relaxed
and optimization is reduced to eigenvector computation. Note
that being compatible does not exclude assignments from
having low affinity. This is a departure of our solution from
that of [21], as it allows multiple groups of assignments,
corresponding to high-density regions in the transformation
space. Spectral matching is a method we compare to in our
experiments.

5 Hough Pyramid Matching

We assume that transformation parameters are normalized
or non-linearly mapped to [0, 1] (see section 7). Hence the
transformation space is F = [0, 1]%. While we formulated
our problem with d = 4, matching can apply to arbitrary
transformation spaces (motion models) of any dimension
(degrees of freedom).

We construct a hierarchical partition

B ={By,...,Br_1} (5

of F into L levels. Each B, € B is a partition of F into 2¥¢
bins (hypercubes), where k = L — 1 — /. The bins are ob-
tained by uniformly quantizing each transformation param-
eter, or partitioning each dimension into 2* equal intervals
of length 2=k By is at the finest (bottom) level; Bj,_1 is at
the coarsest (top) level and has a single bin. Each partition
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By is a refinement of By, ;. Conversely, each bin of By is
the union of 2¢ bins of B,_;.

Starting with the set C' of tentative correspondences of
images P, (), we distribute correspondences into bins with a
histogram pyramid. Given a bin b, let

h(b) ={ce C: f(c) € b} (6)

be the set of correspondences with parameter vectors falling
into b, and |h(b)| its count. We use this count to approxi-
mate affinities over bins in the hierarchy, making greedy de-
cisions upon conflicts to compute a similarity score of P, Q).
This computation is linear-time in the number of tentative
correspondences n = |C/.

5.1 Matching process

We recursively split correspondences into bins in a fop-down
fashion, and then group them again recursively in a bottom-
up fashion. We expect to find most groups of consistent cor-
respondences at the finest (bottom) levels, but we do go all
the way up the hierarchy to account for flexibility.

Large groups of correspondences formed at a fine level
are more likely to be true, or inliers. Conversely, isolated
correspondences or groups formed at a coarse level are ex-
pected to be false, or outliers. It follows that each correspon-
dence should contribute to the similarity score according
to the size of the groups it participates in and the level at
which these groups are formed. We use the count of a bin
to estimate a group size, and its level to estimate the pair-
wise affinity of correspondences within the group: indeed,
bin sizes (hence distances within a bin) are increasing with
level, hence affinity is decreasing.

In order to impose a one-fo-one mapping constraint, we
detect conflicting correspondences at each level and greedily
choose the best one to keep on our way up the hierarchy. The
remaining are marked as erased. Let X, denote the set of all
erased correspondences up to level ¢. If b € By is a bin at
level ¢, then the set of correspondences we have kept in b is
h(b) = h(b) \ X,. Clearly, a single correspondence in a bin
does not make a group, while each correspondence links to
m — 1 other correspondences in a group of m for m > 1.
Hence we define the group count of bin b as

g(b) = [1h(®)] = 14, ©)

where [z]; = max{0,x}.

Now, let by C ... C b, be the sequence of bins contain-
ing a correspondence c at successive levels up to level ¢ such
that b, € By, for k = 0,. .., . For each k, we approximate
the affinity «(c, ¢) of ¢ to any other correspondence ¢’ € by,
by a fixed quantity. This quantity is assumed a non-negative,

non-increasing level affinity function of k, say «(k). We fo-
cus here on the decreasing exponential form

alk) =27, ®)

where A controls the relative importance between succes-
sive levels, i.e. how relaxed the matching process is. For
A = 1, affinity is inversely proportional to bin size, which
is in fact an upper bound on the actual distance between pa-
rameter vectors. For A > 1, lower levels of the pyramid be-
come more significant and the matching process becomes
less flexible.

Observe that there are g(bx) — g(bx—1) new correspon-
dences joining c in a group at level k. Similarly to standard
pyramid match [13], this gives rise to the following strength
of c up to level /:

¢
se(c) :g(bo)—i—Za(k:){g(bk) —g(bk—1)}- ©)

k=1

We are now in position to define the similarity score
between images P, Q. Indeed, the fotal strength of corre-
spondence c is simply its strength at the top level, s(c) =
sr,—1(c). Then, excluding all erased assignments X = X _;
and taking weights into account, we define the similarity
score by the weighted sum

Z w(c)s(c). (10)

ceC\X

On the other hand, we are also in position to choose the
best correspondence in case of conflicts and impose one-to-
one mapping. In particular, let ¢ = (p,q), ¢ = (p,¢’) be
two conflicting assignments. By definition (4), all four fea-
tures p,p’, q,q" share the same visual word, so c, ¢ are of
equal weight: w(c) = w(c’). Now let b € By be the first
(finest) bin in the hierarchy with ¢,¢’ € b. It then follows
from (9) and (10) that their contribution to the similarity
score may only differ up to level £ — 1. We therefore choose
the strongest one up to level £ — 1 according to (9). In case
of equal strength, or at level 0, we pick one at random.

5.2 Examples and discussion

A toy 2D example of the matching process is illustrated in
Figures 2, 3, 4. We assume that assignments are conflicting
when they share the same visual word, as denoted by color.
As shown in Fig. 2, three groups of assignments are formed
at level 0: {c1,¢a,c3}, {ca, 5} and {cs, co}. The first two
are then joined at level 1. Assignments c7, cg are conflicting,
and c7 is erased at random. Assignments cs, ¢ are also con-
flicting, but are only compared at level 2 where they share
the same bin; according to (9), cs is stronger because it par-
ticipates in a group of 5. Hence group {cg, ¢g } is broken up,
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c €6 c 6 c X co
4 4 4
cs B Cs cs ®
C C G
s C2 9 s C2 9 s Cc2 9
C1 1 &1
Cr C7 Cr
8 X s X o8 X
Level O Level 1 Level 2

Fig. 2 Matching of nine assignments on a 3-level pyramid in 2D space. Colors denote visual words, and edge strength denotes affinity. The dotted

line between cg, cg denotes a group that is formed at level 0 and then broken up at level 2, since cg is erased.

p q similarity score €i C2 €3 C4 C5 Cg C9 Cg Ct
a O=0 2+ 12+ 12w(a) a ||@
2 O=Q (24 32+ 32)w(c) c2 ® Jg
. O=0 (24 32+ jDu(es) “ e 1
¢ O=0 (1+ 13+ 12)w(cy) €4 1 1 0
s (1+ 13+ 12)w(cs) Cs 2
ce = 0 cs i
e X 0 09 1 o
cs 16w(cs) cg | X
co O=O 16w(co) cr Y X

Fig. 3 Assignment labels, features and scores referring to Fig. 2. Here
vertices and edges denote features (in images P, Q) and assignments,
respectively. Assignments cs,ceg are conflicting, being of the form
(p,q), (p,q")- Similarly for c7, cg. Assignments c1, . . ., c5 join groups
at level 0; cg, cg at level 2; and cg, c7 are erased.

cg 1s erased and finally cg, cg join ¢y, ...,
at level 2.

c5 in a group of 7

Apart from the feature/assignment configuration in im-
ages P, Q, Fig. 3 also illustrates how the similarity score
of (10) is formed from individual assignment strengths, where
we have assumed that A = 1, so that (k) = 27*. For in-
stance, assignments c1, ..., cs have strength contributions
from all 3 levels, while cg, cg only from level 2. Fig. 4 shows
how these contributions are arranged in a (theoretical) n X n
affinity matrix A. In fact, summing affinities over a row of
A and multiplying by the corresponding assignment weight
yields the assignment strength, as illustrated in Fig. 3—note
though that the diagonal is excluded due to (7).

Fig. 4 Affinity matrix equivalent to the strengths of Fig. 3 according
to (9). Assignments have been rearranged so that groups appear in con-
tiguous blocks. Groups formed at levels 0, 1,2 are assigned affinity

1
1,51 L respectively. Assignments are placed on the diagonal, which is

excluded from summation.

Finally, observe that the upper triangular part of A, re-
sponsible for half the similarity score of (10), corresponds
to the set of edges among assignments shown in Fig. 2, the
edge strength being proportional to affinity. This reveals the
pairwise nature of the approach [8][21], including the fact
that one assignment cannot form a group alone.

Another example is that of Fig. 1, where we match two
real images of the same scene from different viewpoints. All
tentative correspondences are shown, but colored accord-
ing to the strength they have acquired through the matching
process. There are a few mistakes, which is expected since
HPM is really a fast approximation. However, it is clear that
the strongest correspondences, contributing most to the sim-
ilarity score, are true inliers. There may be no non-rigid mo-
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Fig. 5 Correspondences of the example in Fig. 1 as votes in 4D
transformation space. Two 2D projections are depicted, separately for
translation (z, y) (above) and log-scale / orientation (log o, 6) (below).
Translation is normalized by maximum image dimension. Orientation
is shifted by 57/16 (see section 7). There are L = 5 levels and we are
zooming into the central 8 x 8 (16 x 16) bins above (below). Edges
represent links between assignments that are grouped in levels 0, 1,2
only. Level affinity « is represented by three tones of gray with black
corresponding to «(0) = 1.

tion or relative motion of different objects like two cars, yet
the 3D scene geometry is such that not even a homography
can capture the motion of all visible surfaces. Indeed, the
inliers to an affine model with RANSAC are only a small
percentage of the ones shown here.

In analogy to the toy example of Fig. 2, Fig. 5 illustrates
matching of assignments in the Hough space. Observe how
assignments get stronger and contribute more by grouping
according to proximity, which is a form of consensus. HPM
takes no more than 0.6ms to match this particular pair of
images, given the features, visual words, and tentative cor-
respondences.

5.3 The algorithm

The matching process is outlined more formally in algo-
rithm 1. It follows a recursive implementation: code before
the recursive call of line 12 is associated to the fop-down
splitting process, while after that to botfom-up grouping.
For brevity, variables or functions that are used in some
block of code without definition or initialization are consid-
ered global. For instance weights w(c) are global to HPM,
strengths s(c¢) are global to HPM-REC and ERASE, and so on
e.g. for B, L, X. On the other hand, C is redefined locally.
In fact, |C| is decreasing as we go down the hierarchy.

Algorithm 1 Hough Pyramid Matching
1: procedure HPM(assignments C, levels L)
2: X < 0; B < PARTITION(L)
forallc € Cdos(c) «+ 0
HPM-REC(C,L — 1)
return score - o x w(c)s(c) 10
end procedure

AN

: procedure HPM-REC(assignments C, level ¢)
9: if |C] < 2V £ < 0 return

10: forallb € By do h(b) «+ 0

11: for all c € C do h(B¢(c)) «+ h(Be(c))Uc
12: for all b € B, do HPM-REC(h(b), ¢ — 1)
13: for allb € B, do

14: X <+ XUERASE(h(b))

15: h(b) «— h(b)\ X

16: if |h(b)| < 2 continue

17: if/=1L—1thena <« lelsea+ 1—2"*

18: for all c € h(b) do s(c) « s(c) + a2~ *g(b) 9
19: end for

20: end procedure

Assignment of correspondences to bins is linear-time in
|C| in line 11, though equivalent to (6). By partitions F for
each level /, so given a correspondence c there is a unique
bin b € By such that f(c) € b. We then define a constant-
time mapping /3¢ : ¢ — b by uniformly quantizing parameter
vector f(c) at level £. Storage in bins is sparse and linear-
space in |C|; complete partitions B, are never really con-
structed.

Computation of strengths in lines 17-18 of algorithm 1 is
equivalent to (9). In particular, substituting (8) into (9) and

manipulating similarly to [13] yields
L-1
s(¢) = g(bo) + D 27 (g(br) — g(bx-1)) (11)
k=1
L—2
=a) 2 Mg(be) + 27 Vg(by ), (12)
k=0

where a = 1 — 27

Given a set of assignments in a bin, optimal detection of
conflicts can be a hard problem. In function ERASE of al-
gorithm 2, we follow a very simple approximation whereby
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Fig. 6 Detection of conflicts based on (a) visual word classes and
(b) component classes, under soft assignment. Vertices on the left
(right) represent query (database) features. Labels denote assigned vi-
sual words, which are multiple for the query features. Same color de-
notes assignments in conflict.

two assignments are conflicting when they share the same
visual word. This avoids storing features; and makes sense
because with a fine vocabulary, features are uniquely mapped
to visual words, e.g. 92% in our test sets—see section 8 for
details.

Algorithm 2 Erase using visual word classes

1: procedure ERASE(assignments C')

2: x4 0;U « 0;

3: forallc e CdoU « U Uu(c)

4 forallu € U doe(u) «+ 0

5: forall c € C do e(u(c)) + e(u(c)) Uc

6: forallu € U dox < xUe(u) \ argmax c.(y) s(c)
77

8:

return erased assignments x
end procedure

For all assignments h(b) of bin b we first construct the
set U of common visual words. This is done in line 3, where
u(c) is the visual word assigned to c. Then, in lines 4-5, we
define for each visual word v € U the visual word class
e(u), that is, the set of all assignments mapped to u. Ac-
cording to our assumption, all assignments in a class are
(pairwise) conflicting. Therefore, we keep the strongest as-
signment in each class, erase the rest and update X.

It is clear that all operations in each recursive call on bin
b are linear in |h(b)|. Since By partitions F for all ¢, the total
operations per level are linear in n = |C|. Hence the time
complexity of HPM is O(nL).

Algorithm 3 Erase using connected component classes

1: procedure ERASE-CC(connected components Z)

2: z < 0;

3 forall z € Z do e(z) + E(z)

4 forall z € Z dox < xUe(2) \ argmax ce(,) s(c)
5: return erased assignments x

6: end procedure

6 Matching under soft assignment

The use of a vocabulary always incurs quantization loss. A
common strategy for partially recovering from this loss is
to assign descriptors to multiple visual words, in practice a
small number of nearest neighbors in the vocabulary [28].
This soft assignment is preferably applied on the query im-
age only, since inverted file memory requirements are left
unaffected [17]. We explore here the use of soft assignment
with HPM, following the latter choice both in the filtering
and re-ranking phase.

In the case of hard assignment, the detection of conflict-
ing assignments has been based on the observation that a
high percentage of features are uniquely mapped to visual
words. Unfortunately, this is not the case with soft assign-
ment: the percentage of uniquely mapped features drops sig-
nificantly, e.g. 85% (80%) for 3 (5) nearest neighbors in our
test sets—see section 8 for details.

Figure 6(a) illustrates the detection of conflicts using vi-
sual word classes under soft assignment. The database im-
age has three features in this example, assigned to three dif-
ferent visual words w1, us, ug respectively, while the query
image has two features soft-assigned to w1, uo and uso, ug re-
spectively. There are three visual word classes in this case,
and keeping one assignment from each class according to al-
gorithm 2 leads to a one-to-many mapping, with one of the
query features mapping to two database features.

We therefore introduce an alternative solution which can
always preserve one-to-one mapping, without significant in-
crease in complexity. Given two images P, (), the union of
features V' = P U @ and the set of assignments C' can be
seen as an undirected graph G = (V, C'), where each fea-
ture is a vertex and each assignment is an edge. In fact, the
graph is bipartite, as each edge always joins a vertex of P to
a vertex of Q.

Under this representation, we compute the set Z of con-
nected components (maximally connected subgraphs) of G.
In practice, using the union find algorithm with a disjoint-
set data structure, this task is quasi-linear in the number of
edges (assignments), hence in the number of vertices (fea-
tures). The assignments of each component are used to de-
fine a component class. Component classes replace the vi-
sual word classes of algorithm 2. In particular, all assign-
ments in the same component are considered pairwise con-
flicting, and only one is kept. Observe that isolated vertices
are features participating in no assignments, implying that
their components have no edges and are ignored.

Figure 6(b) illustrates conflicts using this scheme for the
example of 6(a). There is only one connected component in
this case, only one assignment is kept, and one-to-one map-
ping is preserved. This holds in general: all assignments of
one feature always belong to the same component, so keep-
ing one assignment from each component yields at most one
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Fig. 7 Examples of HPM matching. (Top) hard assignment, visual word classes. (Middle) Soft assignment with 3 nearest neighbors, component
classes. (Bottom) direct descriptor matching with ratio test [23], component classes. The color scheme is the same as in Fig. 1.

assignment per feature. Of course, the scheme of Fig. 6(b) is
more strict than necessary; for instance, it misses one second
assignment that may be valid. On the other hand, this is ben-
eficial in reducing additional votes of background features
due to soft assignment.

The modified function ERASE-CC is summarized in Al-
gorithm 3, where visual word classes e(u) are replaced by
component classes e(z) and F(z) in line 3 stands for the
set of edges of z (which is a graph itself). Both kinds of
classes are treated as equivalence classes with one represen-

tative only selected from each. As in the example of 6, this
scheme can be too strict, especially when the vocabulary is
not fine enough. On the other hand, it is applicable even in
the absence of a vocabulary, for instance when feature cor-
respondences are determined by direct computations in the
descriptor space.

Matching of two real images under different assignment
and ERASE schemes is shown in Fig. 7. It is clear that HPM
can work perfectly well when descriptors are not quantized
and visual words are not available. In fact, this yields the



10

Y. Avrithis and G. Tolias

best matching quality. Hence HPM is not limited to im-
age retrieval and can be applied to different matching sce-
naria, although finding correspondences from descriptors is
much more expensive than matching itself. The use of a vo-
cabulary with soft assignment yields fewer ‘inliers’ (assign-
ments with significant strength contribution); hard assign-
ment yields even less.

7 Implementation
7.1 Indexing and re-ranking

HPM turns out to be so fast in practice that we integrate
it into a large scale image retrieval engine to perform geo-
metric verification and re-ranking. We construct an inverted
file structure indexed by visual word and for each feature
in the database we store quantized location, scale, orienta-
tion and image id. Given a query, this information is suffi-
cient to perform the initial, sub-linear filtering stage either
by bag of words (BoW) [33] or weak geometric consistency
(WGO) [17].

A number of top-ranking images are marked for re-rank-
ing. For each query feature, we retrieve tentative assign-
ments from the inverted file once more, but now only for
marked images. For each assignment ¢ found, we compute
the parameter vector f(c) of the relative transformation and
store it in a collection indexed by marked image id. Given all
assignments and parameter vectors, we match each marked
image to the query using HPM. Finally, we normalize scores
by marked image BoW {5 norm and re-rank.

7.2 Quantization

We treat each relative transformation parameter z, y, o, 6
of (3) separately. Translation t(c) in (2) refers to the coor-
dinate frame of the query image, @. If r is the maximum
dimension of () in pixels, we only keep assignments with
horizontal and vertical translation x,y € [—3r, 3r]. We also
filter assignments such that ¢ € [1/0y,, 04|, Where 0, =
10 is above the range of any feature detector, so anything
above that may be considered noise. We compute logarith-
mic scale, normalize all ranges to [0, 1] and quantize param-
eters uniformly.

We also quantize local feature parameters of the database
images: with L = 5 levels, each parameter is quantized into
16 bins. Our space requirements per feature, as summarized
in Table 1, are then exactly the same as in [| 7]. On the other
hand, guery feature parameters are not quantized. It is there-
fore possible to have more than 5 levels in our histogram
pyramid.

[ imageid [ = [y [ logo [ 6 [ total |
[ 16 [4]4a] 4 [4] 32 |

Table 1 Inverted file memory usage per local feature, in bits. We use
delta encoding for image id, so 2 bytes are sufficient.

7.3 Orientation prior

Because most images on the web are either portrait or land-
scape, previous methods use prior knowledge for relative
orientation in their model [27][17]. We use the prior of WGC
in our model by incorporating the weighting function of [17]
in the form of additional weights in the sum of (10). Be-
fore quantizing, we also shift orientation by 57/16 because
most relative orientations are near zero and we need them to
group together early in the bottom-up process. In particular,
this shift includes (a) /4, so that the main mode of the dis-
tribution in (—m/4, 7 /4] fits in one bin at pyramid level 2,
plus (b) 7/16, so that the peak around 6 = 0 fits in one bin
at level 0.

8 Experiments

In this section we evaluate HPM against state of the art fast
spatial matching (FSM) [27] in pairwise matching and in re-
ranking in large scale search. In the latter case, we experi-
ment on two filtering models, namely baseline bag-of-words
(BoW) [33] and weak geometric consistency (WGC) [17].

8.1 Experimental setup
8.1.1 Datasets

We experiment on three publicly available datasets, namely
Oxford Buildings [27] and Paris [28], Holidays [15] and on
our own World Cities dataset'. Oxford buildings comprises
a test set of 5K images and a distractor set of 100K images;
the former is referred to as Oxford 5K or just Oxford, while
the use of the latter is referred to as Oxford 105K. World
Cities is downloaded from Flickr and consists of 927 an-
notated photos taken in Barcelona city center and 2 million
images from 38 cities used as a distractor set. The annotated
photos, referred to as Barcelona dataset, are divided into 17
groups, each depicting the same building or scene. We have
selected 5 queries from each group, making a total of 85
queries for evaluation. We refer to Oxford 5K, Paris, Holi-
days and Barcelona as test sets. In contrast to Oxford 105K,
the World Cities distractors set mostly depicts urban scenes
exactly like the test sets, but from different cities.

! http://image.ntua.gr/iva/datasets/world_cities


http://image.ntua.gr/iva/datasets/world_cities

Hough Pyramid Matching

8.1.2 Features and vocabularies

We extract SURF features and descriptors [4] from each im-
age, setting strength threshold to 2.0 for the detector. We
build vocabularies with approximate k-means (AKM) [27].
In most cases we use a generic vocabulary of size 100K
constructed from a subset of the 2M distractors, which does
not include the cities of the annotated test sets. This is close
to the situation in real retrieval system. The imbalance fac-
tor [17] of this vocabulary is 1.22. However, for comparison
purposes, we also employ specific vocabularies of different
sizes constructed from the test sets. Unless otherwise stated,
we use the generic vocabulary below. Our measurements
of features uniquely mapped to visual words refer to the
Barcelona dataset with the 100K generic vocabulary, where
the average number of features per image is 594.

8.2 Matching experiment

Enumerating all possible image pairs of the Barcelona test
set, there are 74,075 pairs of images depicting the same
building or scene. The similarity score should be high for
those pairs and low for the remaining 785, 254; we therefore
apply different thresholds to classify pairs as matching or
non-matching, and compare to the ground truth. We match
all possible pairs with 6-dof RANSAC, 8-dof RANSAC, 4-
dof FSM (translation, scale, rotation), SM [21] and HPM.

We use pairs of correspondences to estimate 4-dof (sim-
ilarity) transformations in our implementation of FSM. In
the cases of RANSAC and FSM we perform a final stage of
LO-RANSAC as in [27] to recover an affine (homography)
transform, and use the sum of inlier idf values as a similarity
score. On the other hand, SM and HPM do not need model
fitting or inlier count. The similarity score of HPM is given
by (10), with parameter A (8) and number of levels L set ac-
cording to our experiments in section 8.3.1. We do not use
soft assignment in this experiment.

SM works on the affinity matrix A containing pairwise
affinities between assignments. These are exactly the quanti-
ties that we approximate in HPM without enumerating them.
In our implementation of SM, pairwise affinity is determined
by proximity in the transformation space. In particular, pa-
rameters of relative transformations are initially non-linearly
mapped to [0, 1], as described in section 8.3. Then, given
two assignments ¢ and ¢’ with normalized parameter vectors
f(e), f(c) respectively, their affinity is computed as

w(c)+w(c) . _ /
ale, ) = {”(C)f(c/)nz7 if[[f(c) = f()[2 <7 (13)

0, otherwise,

where parameter 7 is set to 0.15 in practice. The similarity
score of SM is the sum over all affinities of the submatrix of
A chosen by the optimization process of [21].

[
1
T\
08|
=}
S 06|
3
&
04— HPM
—— FSM
021 SM
RANSAC-6DOF
—— RANSAC-8DOF
0 | | / /
0 0.2 0.4 0.6 0.8 1

recall

Fig. 8 Precision-recall curves over all image pairs of Barcelona test
set with no distractors.
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Fig. 9 Matching time versus number of correspondences over all im-
age pairs of Barcelona test set with no distractors.

Given the above settings, we rank pairs according to
score and construct the precision-recall curves of Fig. 8. On
the other hand, Fig. 9 compares matching time versus num-
ber of correspondences over all tested image pairs. We use
our own C++ implementations for all algorithms. Times are
measured on a 2 GHz QuadCore processor, but our imple-
mentations are single-threaded.

HPM clearly outperforms all methods in terms of preci-
sion-recall performance, at the same time being linear in the
number of correspondences and faster than all other meth-
ods. It is remarkable that this is achieved in a 4-dof trans-
formation space only. This is attributed to the fact that its
relaxed matching process does not assume any fixed model.
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[ A [ 08 [ 10 [ 12 | 14 [ 16 | 1.8 [ 20

[[map [ 0.532 | 0.546 | 0.553 | 0.556 | 0.557 | 0.558 | 0.557 |

Table 2 mAP for varying A on Barcelona test set with 2M World Cities
distractors. Filtering is performed with BoW and re-ranking on the top
1K images.

SM is second in performance, but is quite slow, while FSM
is the second choice in terms of speed. We adaptively es-
timate the inlier ratio and the target number of trials for
RANSAC, but we also enforce a limit of 1000 on the num-
ber of trials, which explains the saturation effect in Fig. 9.
Both 6-dof and 8-dof RANSAC are outperformed by other
methods, while 8-dof RANSAC is the slowest.

8.3 Re-ranking

We experiment on retrieval using BoW and WGC with {5
normalization for filtering. Both are combined with HPM
and 4-dof FSM for geometry re-ranking. We measure per-
formance via mean Average Precision (mAP). We also com-
pare re-ranking times and total query times, including filter-
ing. All times are measured on a 2GHz QuadCore processor
with our own C++ single-threaded implementations. We do
not follow any early aborting scheme as in [27].

8.3.1 Tuning

Parameter A. To quantify the effect of the level affinity pa-
rameter \ (8), we measure mAP on the Barcelona test set
with 2M distractors, using BoW for filtering and re-ranking
the top 1000 images using HPM with L = 5 levels. The
latter choice is justified below. Table 2 presents mAP per-
formance for varying A. The performance is maximized for
A = 1.8, boosting the contribution of lower levels. Observe
however that the effect of the parameter above A = 1.2 is
not significant.

Levels. Quantizing local feature parameters at 6 levels
in the inverted file, we measure HPM performance versus
pyramid levels L, as shown in Table 3. We also perform re-
ranking on the single finest level of the pyramid for each L.
We refer to the latter as flat matching; this is still different
than [23] in the sense that it enforces one-to-one matching
under a fine vocabulary and aggregates votes over the entire
transformation space according to (9), even if L = 1.

Observe that the benefit of HPM in going from 5 to 6
levels is small, while flat matching actually drops in perfor-
mance. Our choice for L = 5 then makes sense, apart from
saving space—see section 7. For the same experiment, mAP
is 0.341 and 0.497 for BoW and BoW+FSM respectively. It
is thus interesting to observe that even the flat scheme yields
considerable improvement. This is due to the flexibility of

L £ [ 2 [ 3 [ 4[5 [ 6]
pyramid | 0473 | 0.498 | 0536 | 0.556 | 0.559
flat | 0448 | 0.485 | 0.524 | 0534 | 0500

Table 3 mAP for pyramid and flat matching at different levels L on
Barcelona with 2M World Cities distractors. Filtering is performed
with BoW and re-ranking on the top 1K images.

the model and its ability to handle multiple groups, which
are a departure from [23]. Relaxed matching with the Hough
pyramid further improves performance. Suggestively we
report that re-ranking time for HPM with 3, 4 and 5 lev-
els takes 391ms, 559ms and 664ms respectively, while flat
matching takes around 230ms.

8.3.2 Results

Retrieval examples. Real retrieval examples along with com-
parisons for one query are available in our research page
online’. In particular, for the same query image, positive
images appearing within the top 20 retrieved images are
1, 8 and 11 for BoW, BoW+FSM and BoW+HPM respec-
tively, with query time being respectively 282ms, 5054ms
and 976ms. Most impressive is the fact that when re-ranking
10K images with HPM, all top 20 images are positive.

Distractors. Fig. 10 compares HPM to FSM and base-
line, for a varying number of distractors up to 2M. Both
BoW and WGC are used for the filtering stage and as base-
line. HPM turns out to outperform FSM in all cases. We also
re-rank 10K images with HPM, since this takes less time
than 1K with FSM. This yields the best performance, espe-
cially in the presence of distractors. Interestingly, filtering
with BoW or WGC makes no difference in this case. In Ta-
ble 4 we summarize results for the same experiment with
orientation priors for WGC and HPM. When these are used
together, prior is applied to both. Again, BoW and WGC
are almost identical in the HPM 10K case. Using a prior in-
creases performance in general, but this is dataset depen-
dent. The side effect is limited rotation invariance.

Timing. Varying the number of re-ranked images, we
measure mAP and query time for FSM and HPM. Once
more, we consider both Bow and WGC for filtering. A com-
bined plot is given in Fig. 11. HPM appears to re-rank fen
times more images in less time than FSM. With BoW, its
mAP is 10% higher than FSM for the same re-ranking time,
on average. At the price of 7 additional seconds for filtering,
FSM eventually benefits from WGC, while HPM is clearly
unaffected. Indeed, after about 3.3 seconds, mAP perfor-
mance of BoW+HPM reaches saturation after re-ranking
7K images, while WGC does not appear to help.

Specific vocabularies. Table 5 summarizes performance
on the Oxford dataset for specific vocabularies of varying

2 http://image.ntua.gr/iva/research/relaxed_spatial_matching/
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Fig. 10 mAP comparison for varying database size on Barcelona with
up to 2M World Cities distractors. Filtering is performed with BoW or
WGC and re-ranking on the top 1K images with FSM or HPM, except
for HPM10K where BoW and WGC curves coincide.

no distractors 2M distractors

method - - . -

no prior | prior [ no prior [ prior
WGC+HPM10K - - 0.599 0.612
BoW+HPM10K - - 0.601 0.613
WGC+HPM 0.832 0.851 0.573 0.599
BoW+HPM 0.832 0.837 0.558 0.565
WGC+FSM 0.826 0.846 0.536 0.572
BoW+FSM 0.827 - 0.497 -
WGC 0.811 0.843 0.355 0.447
BoW 0.808 - 0.341 -

Table 4 mAP comparison on Barcelona with and without 2M World
Cities distractors, with and without prior. Re-ranking on top 1K im-
ages, except for HPM10K.
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Fig. 11 mAP and total (filtering + re-ranking) query time for a varying
number of re-ranked images. The latter are shown with text labels near
markers, in thousands. Results on Barcelona with 2M World Cities dis-
tractors.

method vocabulary size

100K [ 200K [ 500K [ 700K
BoW+HPM+P | 0.640 | 0.683 | 0.701 | 0.690
BoW+HPM 0.622 | 0.669 | 0.692 | 0.686
BoW+FSM 0.631 | 0.642 | 0.677 | 0.653
BoW 0.545 | 0.575 | 0.619 | 0.614

Table 5 mAP comparison on Oxford dataset for specific vocabularies
of varying size, without distractors. Filtering with BoW and re-ranking
top 1K images with FSM and HPM. P = prior.

Oxford Paris

method 0 ‘ M 0 ‘ M

BoW+HPM10K+P - 0.418 - 0.419
BoW+HPMI10K - 0.403 - 0.418
BoW+HPM+P 0.546 | 0.381 | 0.595 | 0.402
BoW+HPM 0.522 | 0.372 | 0.581 | 0.397
BoW+FSM 0.503 | 0.317 | 0.542 | 0.336
BowW 0.430 | 0.201 | 0.539 | 0.282

Table 6 mAP comparison on Oxford and Paris datasets with 100K
generic vocabulary, with and without 2M distractors. Filtering per-
formed with BoW only. Re-ranking 1K images with FSM and HPM,
as well as 10K with HPM. P = prior.

size, created from all Oxford images. HPM again has supe-
rior performance in all cases except for the 100K vocabulary.
Our best score without prior (0.692) can also be compared
to the best score (0.664) achieved by 5-dof FSM and specific
vocabulary in [27], though the latter uses a 1M vocabulary
and different features. The higher scores achieved in Per-
doch et al. [26] are also attributed to superior features rather
than the matching process.

More datasets. Switching back to our generic vocab-
ulary, we perform large scale experiments on Oxford and
Faris test sets and present results in Table 6. We consider
both good and ok images as positive examples. We have
shown the capacity of HPM to be one order of magnitude
higher than that of FSM, so it makes sense again to also re-
rank up to 10K images with HPM. Furthermore, focusing
on practical query times, we limit filtering to BoW. HPM
clearly outperforms FSM, while re-ranking 10K images sig-
nificantly increases the performance gap at large scale. Our
best score without prior on Oxford (0.522) can be compared
to the best score (0.460) achieved by FSM in [28] with a 1M
generic vocabulary created on the Paris dataset.

Comparison to other models. In order to be more com-
parable to previously published methods, we conduct an ex-
periment using the modified version of Hessian-Affine de-
tector of [26], where the gravity vector assumption is used
to estimate the dominant orientation of features for descrip-
tor extraction. Similarly to [26] and [32], we switch off ro-
tation for spatial matching and perform our voting scheme
in a pyramid of 3 dimensions. We use a 1M specific vocab-
ulary trained on all images of Oxford 5K, when we test on
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[ method [ Ox5K | Ox 105K [ Paris | Holidays |
HPM (this work) 0.789 0.730 0.725 0.790
Shen et al. [32] 0.752 0.729 0.741 0.762
Zhang et al. [38] 0.696 - - -
[38]+RANSAC 0.713 ; - -
Caoetal. [7] 0.656 - 0.632 -
[7]+RANSAC 0.661 ; - -
Perdoch et al. [26] 0.789 0.726 - 0.715
FSM [27] 0.647 0.541 - -

Table 7 mAP comparison to other spatial models on Oxford 5K and
Oxford 105K test set. Both for our method and all other methods a
specific vobulary of size 1M is created from images of Oxford 5K.

Oxford 5K or Oxford 105K. Similarly, we use a 1M spe-
cific vocabulary for Paris. We further conduct experiments
on Holidays dataset. Since this includes rotated images, the
gravity vector assumption does not hold and we switch back
to the use of SURF features as in our previous experiments.
A specific vocabulary of 200K visual words is used in this
case as in [32].

Table 7 presents mAP performance for a number of spa-
tial matching or indexing models on the Oxford 5K, Oxford
105K, Paris and Holidays test sets. HPM achieves state of
the art performance on all datasets, in fact outperforming all
methods except for Paris, where it is outperformed by Shen
et al. [32], and Oxford 5K, where Perdoch et al. [26] achieve
the same performance. Our query time for re-ranking 1000
images is 210ms on a single threaded implementation, while
the one reported in [26] is 238ms on 4 cores. This time of
HPM is without the early aborting scheme of [27] or [26].
The reported query time in [32] is 89ms on Oxford 5K. Both
time and space per query are (in the worst case) linear in the
dataset size for this method, as voting maps are allocated for
all images having common visual words with the query.

Non-uniform quantization. Relative transformation vo-
tes are not uniformly distributed in Hough space. Apart from
orientation where we use a prior, this is true also for transla-
tion and scale. For instance, the distribution of relative log-
scale and = parameter of translation appears experimentally
close to the Laplacian distribution, as shown in Fig. 12 and
13 respectively. If we quantize Hough space uniformly, bins
will not be equally populated and votes in sparse areas will
not form groups as easily as in dense ones; and when they
do so, their affinity will be lower.

We therefore investigate normalizing distributions, i.e.,
non-linear mapping of relative transformation parameters pri-
or to quantization, so that vote distributions become uni-
form. In particular, we model translation z, y and log-scale
log o by Laplacian distributions, estimate their parameters
via maximum likelihood on experimental data and use the
learned CDFs to non-linearly map «, y and log o to [0, 1].
We discard assignments outside interval [0.05, 0.95], that is
assignments exhibiting extreme displacement or scale change

[ method | strength [ mAP |
BoW only - 0.341
out-of-bounds removed 1.0 0.373
one-to-one only 1.0 0.503
HPM asin (9) | 0.558

Table 8 mAP comparison on Barcelona with 2M World Cities dis-
tractors, illustrating the incremental effect of enforcing voting space
bounds, enforcing one-to-one mapping, and using level-dependent cor-
respondence strengths. The latter is exactly HPM.

compared to the population of our dataset. Finally, we uni-
formly quantize each parameter, which is equivalent to non-
uniform quantization in the original voting space.

We report results only for the combination of translation
and scale normalization, since we have seen that there is no
apparent benefit in other cases (e.g., when each parameter
is alone. Rotation 6 of the relative transformation follows
a similar distribution to the one shown in [17], which we
do not normalize; we rather use the orientation prior in this
case.

Fig. 14 shows mAP as measured on Barcelona test set
for uniform and non-uniform quantization. Quite unexpect-
edly, non-uniform quantization slightly reduces performance
but it also accelerates matching considerably. Votes in sparse
areas appear to increase for distractor images as well, and
this may explain why mAP is not improved. On the other
hand, matching is faster because there are more single votes
in lower levels of the pyramid, and single votes do not form
groups. Non-uniform quantization is therefore a good choice
for further speed-up. However, we still use uniform quanti-
zation in the remaining experiments, seeking maximum per-
formance.

Effect of one-to-one-mapping. Our similarity score is a
weighted sum over all correspondences between two im-
ages. Correspondences with transformations falling out of
bounds (out of the HPM voting space) are discarded, as de-
scribed in Section 7. Results of Table 8 show that, by just re-
moving such correspondences, there is a small improvement
in performance. In this case, set X of (10) includes only
out-of-bounds correspondences, while strength w(c) is set
equal to 1.0. We further enforce one-to-one mapping with
our erase procedure, but still keep strengths equal to 1.0.
One-to-one mapping appears to impressively improve per-
formance since many false matching correspondences are
not accounted in the similarity score. Finally, using strengths
as provided by HPM (9) there is further significant improve-
ment.

8.4 Re-ranking with soft assignment

We experiment on retrieval using soft assignment for visual
words [28] on the query side only [17]. We perform large
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scale experiments and compare HPM to FSM using soft as-
signment with both. We use BoW for filtering in all remain-
ing experiments.

Conflict detection. We compare the two methods of con-
flict detection, namely based on visual word classes (ERASE)
and component classes (ERASE-CC). The results are shown
in Fig. 15 versus number of nearest neighbors used in soft
assignment. Component classes seem to outperform visual
word classes in all cases, despite the fact that correct assign-
ments may be discarded. In fact, the performance of the lat-
ter drops eventually, which is attributed to one-to-one map-
ping not being preserved. In the remaining soft assignment

experiments we only use component classes for conflict de-
tection.

Nearest neighbors. We compare HPM to FSM in terms
of mAP performance and re-ranking time per query ver-
sus number of nearest neighbors, as shown in Fig. 16. The
two methods appear to converge to the same mAP as near-
est neighbors increase when re-ranking 1K images. How-
ever, HPM is clearly superior when re-ranking 10K images,
even more so with orientation prior. HPM remains roughly
one order of magnitude faster and this is much more sig-
nificant under of soft assignment than in the baseline, be-
cause re-ranking time for FSM exceeds reasonable query
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times above 3 nearest neighbors. The number of tentative
correspondences is nearly linear in the number of nearest
neighbors when soft assignment is performed on one side
only [28], so it is confirmed once again that HPM is linear
in the number of correspondences.

Distractors, timing. Similarly to the hard assignment case,
we compare HPM and FSM for a varying number of distrac-
tors up to 2M. mAP is shown in Fig. 17 where we apply soft
assignment with 3 nearest neighbors for all methods. Again,
the benefit of HPM over FSM is higher when re-ranking 10K
images especially with prior, in which case the gain is nearly

NN 500K 700K

FSM | HPM | HPM+P | FSM | HPM | HPM+P
I [ 0677 [ 0692 [ 0701 | 0.653 | 0.686 | 0.690
2 | 0699 | 0714 | 0723 | 0.692 | 0.715 | 0.719
3 10707 | 0716 | 0724 | 0701 | 0.721 | 0.724
4 10709 | 0716 | 0726 | 0711 | 0.726 | 0.730
5 10716 | 0719 | 0724 | 0716 | 0.726 | 0.729
6 | 0712 ] 0713 | 0724 | 0718 | 0.725 | 0.729

Table 9 mAP comparison on Oxford test set for specific vocabularies,
without distractors. Filtering with BoW and re-ranking on the top 1K
images with soft assignment using a varying number of nearest neigh-
bors.

[ method | Oxford | Paris |
BoW+HPM10K+SA+P 0.461 0.456
BoW+HPM10K+SA 0.445 0.434
BoW+HPM+SA+P 0.426 0.427
BoW+HPM+SA 0.414 0.414
BoW+FSM+SA 0.391 0.389
BoW+SA 0.251 0.316

Table 10 mAP comparison on Oxford and Paris datasets with 100K
generic vocabulary, with 2M distractors. Filtering with BoW and re-
ranking on the top 1K images with FSM and HPM, also 10K with
HPM. Using soft assignment with 3 nearest neighbors.

10%. mAP versus re-ranking time for a varying number of
re-ranked images is shown in Fig. 18. Similarly to hard as-
signment, HPM can re-rank one order of magnitude more
images than FSM in the same amount of time with 10%
higher mAP. In general, all methods benefit by 7-13% by
the use of soft assignment compared to baseline BoW, but
query times become unrealistic for FSM.

Specific vocabularies. Table 9 summarizes mAP perfor-
mance for specific vocabularies on Oxford test set. We use
the same vocabularies as in the hard assignment experiments.
Our best score achieved on Oxford with hard assignment
(0.701) now increases to 0.730. However, without distrac-
tors, the gain of HPM over FSM is not as high as in the hard
assignment case.

More datasets. Finally, large scale soft assignment ex-
periments with a generic vocabulary and 2M distractors on
Oxford and Paris test sets are summarized in Table 10. This
time the gain of HPM over FSM in mAP is roughly 5%,
which becomes 7% with the prior.

9 Discussion

Clearly, apart from geometry, there are many other ways in
which one may improve the performance of image retrieval.
For instance, query expansion [10] increases recall of pop-
ular content, though it takes more time to query. The latter
can be avoided by offline clustering and scene map construc-
tion [ 1], also yielding space savings. Methods related to vi-
sual word quantization like soft assignment [28] or hamming
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embedding [17] also increase recall, at the expense of query
time and index space. Vocabulary learning [24] transfers this
problem to the vocabulary itself, given large amounts of in-
dexed images. Other priors like the gravity vector [26] also
help, usually at the cost of some invariance loss.

Experiments in the literature have shown that the ef-
fect of such methods is additive. Comparing to our prior
work [34], we have investigated here the case of soft assign-
ment and we have confirmed this finding. In fact, integrating
soft assignment has been maybe the most interesting among
other methods because it is a non-trivial problem and it has
a considerable impact on query times in general. Improving
or learning a vocabulary, query expansion or other priors are
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Fig. 18 mAP versus re-ranking time for a varying number of re-ranked
images. The latter are shown with text labels near markers, in thou-
sands. Results on Barcelona with 2M World Cities distractors, using
soft assignment with 2 and 3 nearest neighbors for both methods.

straightforward to integrate with HPM and expected to yield
further gain.

We have developed a very simple spatial matching al-
gorithm that requires no learning and can be easily imple-
mented and integrated in any image retrieval engine. It boosts
performance by allowing flexible matching and matching of
multiple objects or surfaces. Matching is not as parameter-
dependent as in other methods: X is a relative quantity and
there is no such thing as absolute scale, fixed bin size, or
threshold parameter. Ranges and relative importance of trans-
formation parameters are fixed so that they apply to most
practical cases, while fitting the voting grid to true distribu-
tions does not influence performance much.
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By dispensing with the need to count inliers to geometric
model hypotheses, HPM also yields a dramatic speed-up in
comparison to RANSAC-based methods. It is arguably the
first time a geometry re-ranking method is shown to reach
saturation in as few as three seconds, which is a practical
query time. The practice so far has been to stop re-ranking at
a point such that queries do not take too long, without study-
ing further potential improvement using graphs like those in
Figure 11.

One limitation of HPM that is shared with e.g. [23], [27],
[26] is that matching depends on the precision of the lo-
cal shape (e.g. scale, orientation) of the features used, apart
from their position. On the other hand, without this informa-
tion, matching is typically either not invariant (e.g. [38] is
only invariant to translation) or more costly (e.g. RANSAC
uses combinations of more than a single correspondence,
and [32] resorts to searching for a number of scales/rotations
on a discrete grid).

Another limitation may be that matching of small ob-
jects is influenced by background features through the ag-
gregation of votes in (9), which is exactly what gives HPM
its flexibility. We expect this influence to be higher than
RANSAC-like methods that rather seek a single hypothe-
sis that maximizes inliers. In fact, seeking for modes in the
voting space is still possible under our pyramid framework
and, at an additional cost, may give precise object localiza-
tion and support partial matching.

It is a very interesting question whether there is more to
gain from geometry indexing. Experiments on larger scale
datasets or new methods may provide clearer evidence. Ei-
ther way, a final re-ranking stage always seems unavoidable,
and HPM can provide a valuable tool. In fact, our first ob-
jective with HPM has been for indexing and although this is
too expensive for an online query, HPM can indeed perform
an exhaustive re-ranking over our entire 2M distractor set in
a few minutes. Further scaling up is a very challenging task
we intend to investigate.

Another far-fetched prospect is to apply HPM to recog-
nition problems. Our very assumption of inferring transfor-
mations from local feature shape makes this prospect rather
limited for object category recognition, but not necessarily
for specific objects. Whenever feature matching becomes
increasingly ambiguous, e.g. with coarser vocabularies, re-
peating or ‘bursty’ patterns [16], HPM clearly favors low
complexity over optimality. It would be interesting to ex-
plore this trade-off. Affine covariant features and geometric
models more complex than similarity can be another sub-
ject of investigation, though flexibility of our model may not
leave much space for improvement.

More can be found at our project page?®, including the
entire 2M World Cities dataset.

3 http://image.ntua.gr/iva/research/relaxed_spatial_matching
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