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Abstract

We present a local feature detector that is able to detect
regions of arbitrary scale and shape, without scale space
construction. We compute a weighted distance map on im-
age gradient, using our exact linear-time algorithm, a vari-
ant of group marching for Euclidean space. We find the
weighted medial axis by extending residues, typically used
in Voronoi skeletons. We decompose the medial axis into a
graph representing image structure in terms of peaks and
saddle points. A duality property enables reconstruction
of regions using the same marching method. We greed-
ily group regions taking both contrast and shape into ac-
count. On the way, we select regions according to our
shape fragmentation factor, favoring those well enclosed by
boundaries—even incomplete. We achieve state of the art
performance in matching and retrieval experiments with re-
duced memory and computational requirements.

1. Introduction
Most successful region detectors like SIFT [9], SURF [2],
or Hessian-affine [13], are based on region intensity and
center-surround operations in scale space, inspired by bi-
ological vision. They can estimate both location and scale
but only a crude approximation of local shape. MSER [11]
is also based on region intensity and can adapt to arbitrary
shape. Boundary-based methods, may be a popular way to-
wards regions under perceptual criteria [1] or shape-based
object detection [4], but have not been used for repeatable
features, with few exceptions like EBR [19].

On the other hand, the distance transform has been a
very successful boundary operator, used in different con-
texts like shape filtering with watershed segmentation [21],
or object detection [6]. But again, it has not been used for
repeatable features, except [17]. The medial axis transform
is even more unexploited in this direction. It is still con-
sidered unstable and typically used for shape representation
and matching on single objects, e.g. [3].

In this work, we extend our rationale of [17] in several
directions. Fig. 1 gives a preview of our result. No edges
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Figure 1. Medial feature detection. (a) Input image. (b) Weighted
distance map and medial axis. The color map indicates ascending
direction by (black → white) and (yellow → red) transi-
tions, respectively. (c) Image partition. (d) Regions detected.

are needed—the distance map is computed directly on im-
age gradient. It is weighted by the gray level of the gradi-
ent, but propagation obeys the Euclidean distance, evident
e.g. at the top-right of Fig. 1(b). A weighted medial axis is
computed on the entire image representing its structure as a
graph. With a dual operation, labels are backpropagated to
give a partition as shown in green lines, guided by a decom-
position of the medial axis at saddle points of the distance
map. The latter are exactly the points where the medial axis
meets partition boundaries in Fig. 1(c).

Graph vertices are constructed at distance peaks in re-
gion interior, and edges at saddle points on region bound-
aries. The partition is sensitive both to contrast, represented
by gradient strength, and to shape—regions are separated
even where intensity is uniform. Both elements are cap-
tured in edge weights, guiding a region grouping process



whereby candidate features are generated. The features, as
shown in Fig. 1(d), are selected according to our shape frag-
mentation factor. The latter measures how well a region is
enclosed by boundaries, in agreement with the Gestalt prin-
ciple of closure. Incomplete boundaries are allowed, as well
as independent selection of whole regions and their parts.

2. Related work and contribution
Weighted distance transform has been studied primarily as
a solution to the Eikonal equation, in problems like shading
from shape [20]. A given function specifies the refractive
index on the plane, while a set of source points specifies
boundary conditions. We do not require a given source map.
Our weighting mechanism is more similar to [5] where the
distance map is obtained by an infimal convolution opera-
tion, equivalent to weighted erosion [10].

Our implementation is a variant of group marching
(GMM) [7], a linear-time fast marching method that selects
a number of points on the propagating front to move as a
group, thus avoiding the cost of sorting. We move all points
of the front as a group using a constant-time priority queue
on quantized distance. This is more similar to [22], and in
the binary case it would reduce to the two-queue scheme
of [10]. However, due to the Euclidean assumption and a
bidirectional update, the entire computation is exact.

To our knowledge, this is the first work to study the me-
dial axis on a distance map weighted by infimal convolu-
tion. Rather than working on PDE’s like [18], we use a
residue criterion based on proximity of source points along
boundaries. It is naturally connected to the definition of the
medial axis and guarantees connectedness. It has been used
for Voronoi skeletons [15] on binary shapes. We extend it
to arbitrary functions in the plane and show that it can be
computed with a similar constant-time operation.

Medial decomposition methods are most often found in
problems of computational geometry like domain decom-
position [8] in binary images. We allow decomposition
in gray-level images, similarly to the upper/lower com-
plete function of [12]. Our approach is closest to water-
shed segmentation applied to the distance map of binary
regions [21], but we use the weighted distance map of the
gray-level input instead. Our partitioning is fundamen-
tally different from gray-level watershed, in that the latter
is guided by image gradient. To our knowledge, no work
has studied the medial axis for image structure representa-
tion, region grouping and repeatable feature detection.

3. Weighted distance map
Representation. We represent 2D images by functions f :
X→ V. As range V we use the extended real line R = R∪
{−∞,∞} and as domain X the continuous (discrete) space
R2 (Z2). We denote by F the space of all such functions.

In practice, we work on a bounded subset X ⊆ X. In the
discrete domain, we identifyX with the set of vertices V of
a grid (graph)G = {V,E} and define its edgesE ⊆ V ×V
as the set of vertex pairs e = (u, v) such that u, v ∈ V
are connected. We use 4- or 8-connectivity, and write u�v
(u×+v) iff u, v are 4- (8-) connected.

Definitions and properties. Given a metric d in X, we
define the weighted distance transform or distance function
or distance map Dd(f) of image f w.r.t. d as

Dd(f)(x) =
∧
y∈X

d(x, y) + f(y), x ∈ X, (1)

Most often we use a metric induced by a norm ‖ · ‖, that is,
d(x, y) = ‖x − y‖ for x, y ∈ X. We then omit d and write
D(f) instead. Although (1) applies to arbitrary functions f ,
if the problem at hand is region detection in images, we use
a function that is related to boundaries, like gradient. This
is discussed in section 5. It is known that (1) is equivalent
to infimal convolution [10].

We define for each point x ∈ X its minimal set S∗f (x)
w.r.t. f as the (possibly empty) set of points y ∈ X for
which quantity d(x, y) + f(y) is minimized:

S∗f (x) = {y ∈ X : d(x, y) + f(y) = D(f)(x)} (2)

for x ∈ X . We often omit f and write S∗(x) instead. We
also write y 3 x iff y ∈ S∗(x). We further define the source
set Sf (x) of x as the subset of its minimal set such that no
two points y, z ∈ Sf (x) are related by y 3 z:

Sf (x) = {y ∈ S∗f (x) : @z(y 3 z 3 x)}. (3)

We also omit f and write S(x). We say that y is a source
of x and write y � x iff y ∈ S(x). More generally, we say
that y ∈ X is a source iff y � x for some x ∈ X , even
itself. We assume in this work that each x ∈ X has at least
one source: y � x for some y ∈ X . This is always true in
the discrete domain.

Lemma 3.1 Given y ∈ X , the following are equivalent:
(a) y is a source, (b) D(f)(y) = f(y), (c) S(y) = {y}, (d)
y � y.

Define the source set S(f) of f as the set of all sources
y ∈ X . It follows that S(f) = {x ∈ X : x � x}. This
makes it easy to detect sources. By s(x), x ∈ X we denote
the source of x if it is unique, otherwise any representative
of S(x). We call function s : X → X a source map.

Lemma 3.2 The distance map D(f) is uniquely deter-
mined by the restriction f |S(f) of f on its source set.

This is a generalization of an analogous observation on
the binary distance map, which, for a binary input B ⊆ X,
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Figure 2. (a) Input image, detail of leuven scene. (b) Gradient
map. (c) White: source; red: medial axis; black: saddle point;
blue: image boundary. (d) Weighted distance map, with detected
features in overlay.

is uniquely determined by its boundary ∂B. Source sets are
then closely related to region boundaries. Accordingly, we
define the interior set of f as I(f) = X \ S(f).

Computation. Given an image f , we develop our exact
group marching (EGM) algorithm to compute the distance
map h = D(f) according to (1) and the source map s in
the discrete domain, using the Euclidean metric. EGM is
outlined in algorithm 1. We initialize propagation at the
source seed set S+(f), defined as

S+(f) = {x ∈ X : f(x) < min
y�x

f(y) + 1}. (4)

Because d(x, y) = 1 for y�x, it can be shown that S+(f) is
a superset of the source set S(f).

At the heart of propagation lies a priority queue with
discrete priority levels, implemented as an array of internal
FIFO queues. Points are labeled as far, near, or done.
The queue holds points that are near, that is, points on
the propagation front. Points are processed in groups: each
point x is processed according to its level bh(x)c and points
with the same level at random order. Neighbors y that are
far PROPagate the front; near ones participate in an UP-
DATE process twice, first in an inward (line 7) and then in
an outward (line 8) direction w.r.t. x. The computation is
exact, despite the random processing order:

Proposition 3.3 (a) EGM correctly computes distance
D(f)(x) as defined in (1) and source point s(x) for each
x ∈ X . (b) Its time complexity is O(n), where n = |X|.

Fig. 2 shows an example of weighted distance along with
source points, medial axis and detected features. The image
gradient is used as an input, as detailed in sections 5, 6.

Algorithm 1 Exact Group Marching
1: procedure EGM(image f )
2: initialize q, h, s; construct seed S+ as in (4)
3: for x ∈ S+ do s(x)← x; PROP(x, x)
4: for x ∈ X \ S+ do label x as far
5: while ¬ q.EMPTY( ) do
6: x← q.POP( ); label x as done
7: for y�x, y near do UPDATE(y, x) . inward
8: for y�x, y near do UPDATE(x, y) . outward
9: for y�x, y far do PROP(x, y)

10: end while
11: return distance map h, source map s
12: end procedure
13:
14: procedure PROP(point x, point y)
15: z ← s(x); h(y)← d(y, z) + f(z); s(y)← z
16: q.PUSH(y, bh(y)c); label y as near
17: end procedure
18:
19: procedure UPDATE(point x, point y)
20: z ← s(x); h∗ ← d(y, z) + f(z); if h∗ ≥ h(y) return
21: h(y)← h∗; s(y)← z
22: end procedure

4. Weighted medial axis
Definitions and properties. Given the previous definitions
of sources in a weighted distance map, we say that x ∈ X
is a medial point of f if it has at least two distinct sources.
The weighted medial axis or simply medial axis A(f) is the
set of all such points: A(f) = {x ∈ X : |Sf (x)| > 1}.

Lemma 4.1 The source set and the medial axis of an image
f are mutually exclusive: S(f) ∩ A(f) = ∅. Hence the
medial axis is contained in the interior set, A(f) ⊆ I(f).

The medial axis function A(f) is defined as the restriction
of the distance map D(f) on the medial axis: A(f) =
D(f)|A(f). It is a subset of the (3D) product space E =
X × V. The definitions above make sense only in the con-
tinuous domain. In the discrete domain, we make use of the
following properties.

Lemma 4.2 Let A be the medial axis of f in a Euclidean
space, and let x ∈ A and y ∈ S(x). (a) Construct a
parametrized, open line segment from x to y. Then each
point z on the segment has a unique source s(z) = y. (b) A
has zero thickness, i.e. A ⊆ ∂A.

Given two neighboring points x�y with s(x) 6= s(y),
lemma 4.2(b) suggests there is a medial point m with
S(m) = {s(x), s(y)} on the line segment between x, y. We
therefore label pair (x, y) as medial, according to an exten-
sion of the chord residue criterion [15]. We first discuss our
main algorithm.



Computation. Our Weighted Medial Axis (WMA) al-
gorithm computes the medial axis A(f) of image f given
its weighted distance map h = D(f) and its source map s.
Lemma 4.2(a) expresses the known fact that the medial axis
function is associated to peaks (local maxima) and ridges of
the distance map. We thus start with the medial seed set

A+(f) = {x ∈ X : h(x) ≥ max
y�x

h(y)}, (5)

and continue propagating along A(f) using a FIFO queue
q. For each point x being processed, we SCAN 4-connected
neighbors y�x to decide if (x, y) is a medial pair. We only
PROPagate to x’s 8-connected neighbors if x is found me-
dial after SCANning. We record “medialness” by means of
residue r(x) = maxy�x res(x, y) for x ∈ X and the define
the medial axis as A(f) = {x ∈ X : r(x) > 0}. Residue
function res is discussed below.

Chord residue. To deal with singularities of the dis-
tance map in the discrete domain, Ogniewicz and Kübler
use the chord residue [15]. They define it for binary shapes,
as the difference between the length of a boundary curve
segment and the corresponding chord length in a circle that
is contained in the shape and bitangent to the boundary
curve at the two endpoints. We use the weighted distance
map (1) and see the distance value as a third dimension,
or height. Recalling lemma 3.2, we define source func-
tion S(f) of f as the restriction of D(f) on the source set:
S(f) = D(f)|S(f) = f |S(f). Dually to the medial axis
function, S(f) ⊆ E is associated to local minima and val-
leys of the distance map. We generalize circles to cones
lying below and bitangent to S(f), and 2D curve segments
in X to 3D paths along S(f) in E. We measure distances
with the product metric δ of the Euclidean metric d of 2D
space X and the absolute difference of 1D space V:

δ(u, v) = d(u, v) + |h(u)− h(v)|, u, v ∈ X. (6)

Now, given two points x, y ∈ X with sources u =
s(x), v = s(y), we generalize the chord residue as
res(x, y) = `(u, v)− δ(u, v) for u 6= v, or 0 otherwise.

Length function. Length function ` generalizes the po-
tential function of [15] as the length of the shortest path
(geodesic) connecting points (u, f(u)) and (v, f(v)) along
the surface of the source function S(f) in space E. Its com-
putation is facilitated by the following.

Lemma 4.3 The medial axis A(f) is uniquely determined
by the restriction f |∂S(f) of function f on the boundary of
its source set.

In the discrete domain, we start by computing the source
set S(f) = {x ∈ X : x � x} and its discrete boundary
w.r.t. 4-connectivity as

∂S(f) = {x ∈ S(f) : ∃y(y�x ∧ y ∈ I(f))}. (7)
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(c) (d)
Figure 3. (a) Medial axis for graffiti scene image 1. Mini-
mum (maximum) height on the medial axis is mapped to yellow
(red), as in Fig. 1. (b) Detected features and underlying partition.
(c), (d) The same for image 3 of the same scene. The medial axis
appears to have changed form, but the features are quite stable.

We then construct a weighted graph H as a subgraph of
grid G with vertex set V (H) = ∂S(f), and weight func-
tion w(e) = δ(u, v) for edge e = (u, v) ∈ E(H). We
compute its components and the faces of each component.
Then, seeing each face c as a cycle with start vertex v0, we
compute for each vertex v of c the weight wc(v) of path
(v0, . . . , v). Each vertex v ∈ V (H) may belong to up to
four faces. If C(v) denotes the set of faces containing v,
intersection C(u, v) = C(u) ∩ C(v) is either empty (if
u, v belong to distinct components, in which case we de-
fine `(u, v) = +∞) or contains exactly one common face
c, associated to the component of I(f) containing x, y. In
the latter case,

`(u, v) = min(`c(u, v), w(c)− `c(u, v)) (8)

where `c(u, v) = |wc(u) − wc(v)| and w(c) is the total
weight of face c. This is a constant-time operation.

Proposition 4.4 (a) Given point pairs (x, y), (x′, y′) in
the same component of interior set I(f) with source pairs
(u, v), (u′, v′), respectively, define paths π = (u, . . . , v),
π′ = (u′, . . . , v′). If π ⊂ π′, then res(x, y) < res(x′, y′).
(b) WMA generates exactly one component ofA(f) for each
component of I(f). (c) Its complexity excluding initializa-
tion is O(k), where k = |A(f)|.

Hence, as in [15], the residue function is increasing w.r.t.
inward moves along the medial axis, and pruning is as sim-
ple as thresholding. Figures 3(a),(c) show examples of what
our weighted medial axis looks like on a gray-level image.



5. Feature detection
Medial axis decomposition. While the medial axis typi-
cally represents the shape of single object, we represent the
structure of an entire image. We decompose it into compo-
nents and construct a weighted graph G such that: (a) its ver-
tices V correspond to local maxima (peaks) of the distance
map; (b) its edges E correspond to local minima along the
medial axis (i.e., along ridges), therefore to saddle points
of the distance map; (c) the weight of each edge is defined
as the height at the associated saddle point. Peaks corre-
spond to the interior of image regions, and saddle points
to mountain passes between adjacent regions. Red compo-
nents in Fig. 2(c) or 6(b) correspond to regions, each con-
tains a peak, and each is represented in G as a vertex. Sim-
ilarly, black points correspond to saddle points, and each is
represented as an edge.

Our medial axis decomposition (MAD) algorithm con-
structs graph G given a distance map h = D(f) and the as-
sociated medial axis A(f). We start with the distance peaks
on the medial axis, A+(f) ∩ A(f), and continue propagat-
ing downwards. We use again a priority queue q and prop-
agate to 8-connected neighbors according to height, as in
EGM. However, the priority level is now negated in PROP,
because of the downward direction. We assign a component
label κ(x) to each x ∈ X , represented by a vertex of graph
G. We build G by gradually inserting a VERTEX whenever
we first visit a peak with unlabeled neighbors, and an EDGE
whenever two fronts with distinct labels meet.

Image partition. Next, we partition the entire image
via a reconstruction operation. We exploit a duality prop-
erty whereby this operation reduces to EGM algorithm. Re-
call that the distance map D(f) applies to functions f de-
fined on domain X whereas the medial axis function A(f)
is restricted to subset A(f) ⊂ X . Given any function
f : U → V, we define the extension operator f |X =
f ∪ ((X \ U) × {−∞}), which extends its domain to X
with value −∞ wherever f is not defined. We now define
the extended medial operator M byM(f) = A(f)|X for
f ∈ F. SinceM(f) is defined on domain X , we can apply
distance or medial axis operators sequentially:

Proposition 5.1 Given function f , let g =M(f) in a Eu-
clidean space, and define f ′ = −M(−g), g′ = M(f ′).
Then source function S and medial axis function A are
dual: (a) −S(−g) = A(f), and (b) S(f ′) = −A(−g).
(c) This process is stable: g′ = g.

This result is quite condensed, but an one-dimensional
example in Fig. 4 illustrates the idea. Proposition 5.1 sug-
gests that we can define the extended boundary operator B
by B(f) = −M(−f) for f ∈ F. Then, similarly to mor-
phological erosion and dilation, the two operators are dual.
Also, similarly to opening (closing), composition B ◦ M
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Figure 4. Illustrating duality of proposition 5.1 in one dimension.
Functions in (b), (d) are negated versions of (a), (c); horizontal
axis is X . (a) Black: f , blue: D(f), green dots: A(f). f is low
at image boundaries, high inside regions. (b) Blue: −D(f), green
line: −g for g =M(f), green dots: −A(f) = S(−g). (d) Red
line: D(−g), red dots: A(−g). (c) Red dots: S(f ′) = −A(−g).
This is where fronts meet during partitioning.

(M ◦ B) is idempotent and has fixed point f iff f = B(g)
(f =M(g)) for some g ∈ F.

What we do in practice is that, given distance map h =
D(f) and medial axis A(f), we invoke EGM giving as in-
put function g with g(x) = −h(x) if x ∈ A(f), or +∞
otherwise. Further, we use label map κ from MAD and
construct component labels κ(s(x)) for x ∈ X . This label
map provides a partition of domain X .

Discussion. Propagation in MAD is equivalent to the
watershed segmentation of the negated distance map re-
stricted to the medial axis (i.e. on A(f)) with peaks as
markers. It is topological but based on a distance func-
tion that is also contrast-weighted. MAD also performs ad-
ditional tasks like building the graph and finding markers
(components) in parallel to propagation.

Similarly, image partitioning is equivalent to watershed
segmentation of the negated distance map−h onX with the
components of MAD as markers. This differs from the typ-
ical topological watershed of binary region masks resulting
from gray-level watershed; we are working on the weighted
distance map resulting directly from the gray-level input.
Most importantly, casting it as distance propagation enables
the use of EGM, hence a very fast implementation.

Feature detection. We now have both a partition of do-
main X and a graph G representing weighted adjacency re-
lations between components. We define a feature to be the
union of any number of adjacent components. We group
components in non-increasing order of edge weights, using
the union-find algorithm. Each newly acquired component
is considered as a potential feature, as follows.

The source set is frequently disconnected or fragmented.
Gaps appear either due to variation of f along edges, or
to region shape. Examples are shown in Figs. 1, 2, 5.
MAD helps overcome fragmentation because every gap is
associated to a saddle point of the distance map. We still
get a component associated to an image region even if its
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Figure 5. (a) Input image, detail of bikes scene, image 1. (b)
Point labels. (c) Image partition and detected features. (d),(e),(f)
Same for image 6 of the same scene. Color legend for point labels:
white: source boundary; cyan: source interior; red: medial
axis; black: saddle point; blue: image boundary.

boundary is fragmented, because the distance map is max-
imized somewhere in the interior. The surrounding sad-
dle points give rise to edges of graph G. For each edge
e ∈ E , let x(e) be the saddle point where e is generated.
Then the width of the associated gap is w(x(e)), where
w(x) = d(x, s(x)) = h(x) − h(s(x)) for x ∈ X . Given
component (vertex) κ with area a(κ) and incident edge set
E(κ) 6= ∅, we define its shape fragmentation factor as

φ(κ) =
1

a(κ)

∑
e∈E(κ)

w2(x(e)), (9)

whereas φ(κ) = 0 if E(κ) = ∅ (κ is isolated). This factor
is a dimensionless, scale invariant quantity. It is higher for a
single large gap, lower for several smaller ones, and identi-
cally zero for closed shapes. As shown in Fig. 6, it measures
how well a region is enclosed by boundaries (which may be
incomplete), capturing the Gestalt principle of closure.

Iterating over edges e ∈ E , we compute the sum of
squared gap widths appearing in (9) for each component,
prior to component grouping. Similarly, iterating over
points x ∈ X , we collect the statistics of each component
up to second order. We recursively update all quantities dur-
ing grouping. We select a component κ as an image feature
if φ(κ) < τ and measure its position (centroid) and local
shape (covariance matrix) via its statistics. Threshold τ > 0
controls the selectivity of the detector.

Height function. Given an input image f0, we now de-
fine function f used in distance computation. Starting with
gradient magnitude g = |∇f0|, define f(x) = σ/g(x) for
x ∈ X , where σ is a scale parameter. This generalizes the
0/∞ indicator function used in binary distance transform.

(a) (b) (c)
Figure 6. (a) Binary input image (no gradient used here). (b) Point
labels; color legend is the same as in Fig. 5. (c) Image partition.
There are two saddle points on the medial axis of (b), and two gaps
with widths w1, w2. The fragmentation factor of triangle κ in (c)
is φ(κ) = (w2

1 + w2
2)/a(κ) where a(κ) is its area.

(a) (b)
Figure 7. Medial features on mannequin image with σ = 4 and
(a) τ = 0.3, (b) τ = 0.7.

6. Experiments

Datasets, evaluation protocol, and tuning. We first
carry out parameter tuning of our Medial Feature Detector
(MFD). Shape fragmentation threshold τ controls the selec-
tivity of the detector. Scale parameter σ controls the level of
detail retained by the weighted distance map, seen as a non-
linear filtering operator. Without constructing a scale space,
MFD is still able to detect regions at different scales in the
same image, as in Fig. 7. We obtain gradient magnitude via
convolution with Gaussian derivative g = |∇Gt ∗ f0| us-
ing derivation scale t = 0.5, and normalize g in [0, 1]. We
choose σ = 4 and τ = 0.6, giving balanced performance
across difference images. An example with these parame-
ters is shown in Fig. 3(b),(d).

We then conduct two sets of experiments. One involves
matching across viewpoint, zoom, rotation, light, and blur
changes according to the dataset and evaluation protocol
of [14]. We measure performance in terms of repeata-
bility and matching score, using the 1-NN strategy and
SIFT descriptors for all detectors. We give here results
for the four scenes graffiti, boat, wall, and bikes,
of six images each. The other experiment involves larger
scale retrieval using a BoW model and fast spatial match-
ing (FastSM), following the experimental setup of [16] and
measuring performance in terms of mean Average Precision
(mAP) score. Here we use the Oxford 5K dataset, compris-
ing 5, 062 images with 55 queries. We extract features and
construct 50K and 200K vocabularies. We construct an in-
verted index and rank images with TF-IDF, without stop
list. We re-rank with FastSM and verify images having at



Features (×106) Memory (MB)
Detector Total Used 50K 200K

MFD 9.32 9.32 62 68
Hessian-affine 29.03 11.61 116 126
MSER 13.33 11.33 72 76
SURF 4.24 4.24 30 34
SIFT 11.13 11.13 76 82

Table 1. Total number of features in Oxford 5K dataset, and fea-
tures used in vocabulary construction. Total memory required for
the inverted index, for the 50K and 200K vocabularies.

Query phase Inv. index Re-ranking
Detector 50K 200K 50K 200K

MFD 5.32 3.96 26.8 8.2
Hessian-affine 11.80 6.72 161.3 44.9
MSER 6.25 4.30 60.9 13.2
SURF 3.43 3.00 2.5 1.7
SIFT 7.01 4.61 35.8 8.4

Table 2. Average query time in ms. Inverted index refers to total
TF-IDF ranking time; re-ranking to FastSM per image pair.

mAP Inv. index Re-ranking
Detector 50K 200K 50K 200K

MFD 0.515 0.580 0.568 0.617
Hessian-affine 0.488 0.573 0.537 0.614
MSER 0.473 0.544 0.537 0.589
SURF 0.488 0.531 0.497 0.536
SIFT 0.395 0.457 0.434 0.495

Table 3. Mean average precision, with and without re-ranking.

least 4 inliers. Times are measured on a 3GHz Core i7-950
processor with 12GB memory, with our own C++ imple-
mentations.

Repeatability and matching score experiments. Fig. 8
presents repeatability and matching score measurements of
MFD compared to the six methods studied in [14], that
is, Hessian-Affine, Harris-affine, MSER, IBR, EBR and
Salient Regions. MFD achieves excellent matching score,
outperforming all other detectors in certain scenes, while
repeatability is also high in most cases. Its performance is
striking at the wall scene. This is justified because fea-
tures are identified via boundaries rather than intensity dif-
ferences. Good performance is accompanied by a reason-
ably small number of responses. Still, as shown in Fig. 8(d),
these fewer features provide good image coverage. Thanks
to shape fragmentation, highly textured areas do not give
any response, e.g. the grass in the boat scene.

Retrieval experiments. Tables 1, 2, 3 present statis-
tics on indexing space, average query time, and mean av-
erage precision (mAP), respectively. Indexing space and

query time depend on the average number of features per
image, and the objective is highest mAP with reasonable
space/time requirements. All experiments are conducted for
the two 50K and 200K vocabularies. We use up to approxi-
mately 11M features for vocabulary construction, selecting
features at random when more are available. MFD outper-
forms all detectors in terms of retrieval performance, fol-
lowed very closely by Hessian-affine, with the difference
being even smaller after re-ranking. The latter is however
quite impractical in terms of memory and query times.

7. Discussion
Without any explicit scale space construction, and without
any inherent affine covariance properties, our medial fea-
ture detector achieves state of the art performance in image
matching and retrieval experiments. An interesting future
direction may be the exploitation of the exact region shape,
or the extension to other types of features like corners. We
also see a number of different directions like segmentation,
edge detection and grouping, or shape-based object detec-
tion. More can be found at our project homepage1 including
the MFD executable code and documentation.
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Figure 8. (a) Repeatability, (b) matching score, (c) correct matches, and (d) coverage for image 1. From top to bottom, (scene / #features
in image 1 / detection time): (graffiti / 530 / 0.55s), (boat / 665 / 0.72s), (wall / 876 / 1.08s), and (bikes / 545 / 0.84s).
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