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ABSTRACT
We present a new approach to image indexing and retrieval,
which integrates appearance with global image geometry
in the indexing process, while enjoying robustness against
viewpoint change, photometric variations, occlusion, and
background clutter. We exploit shape parameters of local
features to estimate image alignment via a single correspon-
dence. Then, for each feature, we construct a sparse spatial
map of all remaining features, encoding their normalized po-
sition and appearance, typically vector quantized to visual
word. An image is represented by a collection of such feature
maps and RANSAC-like matching is reduced to a number
of set intersections.

Because the induced dissimilarity is still not a metric, we
extend min-wise independent permutations [3] to collections
of sets and derive a similarity measure for feature map col-
lections. We then exploit sparseness to build an inverted
file whereby the retrieval process is sub-linear in the total
number of images, ideally linear in the number of relevant
ones. We achieve excellent performance on 104 images, with
a query time in the order of milliseconds.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing[Indexing methods]; H.3.3
[Information Storage and Retrieval]: Information
Search and Retrieval—Search process

General Terms
Algorithms and Experimentation

Keywords
sub-linear indexing, indexing geometry, image retrieval,
hashing, feature maps

1. INTRODUCTION
Geometry is essential in many problems of computer vi-
sion like feature correspondence, image registration, wide
baseline stereo matching, object recognition, and retrieval.
And it has been more so in early years when features were
non-discriminative, e.g. points. With the advent of more
discriminative features and descriptors, discarding geome-
try altogether has been an “easy” way to deal with view-
point change and occlusion. The success of the bag-of-words
model, largely due to its very low computational cost, has
come as quite a surprise to many, for instance in the seminal
work of Sivic and Zisserman [23].

In order to boost performance at large scale however, ge-
ometry is still essential. Even if weaker or stronger geometric
models are feasible in tasks like registration or recognition,
this is clearly not the case for image retrieval. State of the
art approaches are still based mostly on appearance in the
filtering stage, while geometric or spatial constraints typi-
cally come as a second, re-ranking stage. This is the case
e.g. in Philbin et al. [19] where the need is identified for
including spatial information in the index itself. Even in
more recent work, this has only been achieved in the form
of weak geometric constraints as in Jegou et al. [13], or local
geometry, as in Chum et al. [7]. On the other hand, global
geometry indexing is at least as old as geometric hashing by
Lamdan and Wolfson [16]. To our knowledge, no work has
been reported that can index appearance and global geom-
etry for large scale image retrieval.

This is exactly our attempt in the present work. One
of our starting points is [19] where spatial matching is per-
formed as a special case of RANSAC [11]. Shape parameters
of local features are used to generate each hypothesis using
a single feature correspondence. We go a step further and
for each feature we encode the normalized position and ap-
pearance of all remaining features in a sparse histogram that
we call a feature map. We then extend min-wise indepen-
dent permutations [3] and derive a similarity measure for
feature map collections. With the use of an inverted file,
the retrieval process becomes sub-linear in the total num-
ber of images. Further, the returned images are associated
with a rough estimate of the relevant geometric transforma-
tion. For the same processing time, we effectively increase
the number of images we verify by an order of magnitude.

Because our work draws on several existing approaches,
section 2 provides a background on a number of related prob-
lems in shape matching and feature correspondence. Section
3 derives our novel feature map representation along with



the associated matching process. Hashing and indexing is
then presented in section 4, while other related work is not
discussed until our approach has been presented (section 5).
Implementation, experiments and discussion are provided in
sections 6, 7 and 8, respectively.

2. BACKGROUND
We start by examining a number of simple models for match-
ing sets of features that are based on geometry, appearance,
or both. We observe how these models can provide solu-
tions for alignment, correspondence, and outliers and derive
a single model that we will attempt to further simplify in
the following sections.

Shape matching. Let P,Q ⊆ R2 be two finite sets of
points denoting the positions of the features of two images.
The features are taken as non-discriminative, that is, only
their coordinates are known. Assume for the moment that
|P | = |Q| and that there is a known one-to-one mapping
π : P → Q. In the statistical theory of shape (Dryden and
Mardia [10]), one of the most well studied problems is the
estimation of the optimal geometric transformation aligning
the two sets

ST (P,Q; r) = max
B,t

∑
p∈P

r(Bp+ t, π(p)), (1)

where r(p, q) is an arbitrary spatial similarity (proximity)
measure, t is a translation and B ∈ R2×2 is typically a simi-
larity transformation, which we will assume here to be affine.
This problem never appears as such in our case, due to un-
known feature correspondence and outliers.

Feature correspondence. Now, drop the known map-
ping assumption and rather assume discriminative features
specified by finite descriptor sets X,Y ⊆ Rd. Ignoring po-
sitions for now, the following assignment problem can deal
with unknown correspondence and, partially, outliers:

SA(X,Y ; s) = max
{a}

∑
x∈X

∑
y∈Y

ax,ys(x, y) (2)

s.t.
∑
x∈X

ax,y ≤ 1, ∀y ∈ Y (3)

∑
y∈Y

ax,y ≤ 1, ∀x ∈ X (4)

ax,y ∈ {0, 1}, ∀x ∈ X, y ∈ Y (5)

where s(x, y) is again an arbitrary similarity measure in the
descriptor space Rd, and ax,y = 1 represents correspondence
between x and y. Despite the loss of geometry, this is a very
important problem because it can work well in practice if
the features are discriminative enough.

Bag-of-words. Further, define a visual vocabulary or
codebook V ⊆ Rd with |V| = kv elements or visual words,
derived e.g. by vector quantization on a training set. Let
v(x) be the quantized version of descriptor x, Hv(X) = {x ∈
X : v(x) = v} the set of elements of X mapped to word
v, and hv(X) = |Hv(X)| their count. Defining similarity
sV(x, y) = 1v(x)=v(y), it is easy to see that

SA(X,Y ; sV) =
∑
v∈V

min(hv(X), hv(Y )), (6)

that is, the histogram intersection of the visual word repre-
sentations of sets X and Y . In an analogous way, we may

replace the one-to-one matching scheme of (2)-(5) with an
one-to-many voting scheme

SM (X,Y ; s) =
∑
x∈X

∑
y∈Y

s(x, y) (7)

and confirm that the similarity of the visual word represen-
tations is equivalent to an inner product (Jegou et al. [13]),

SM (X,Y ; sV) =
∑
v∈V

hv(X)hv(Y ). (8)

When histograms are normalized, this is the well-known co-
sine similarity measure used in information retrieval. Either
way, combined e.g. with an inverted file structure to exploit
sparsity, this is a simple and fast method that is very com-
mon in the filtering stage of retrieval.

Towards RANSAC. One-to-many matching may give
unexpected results according to our perception of dissimi-
larity [22]. It is however easier to estimate, especially when
using a codebook. Following (7), let us start with a set of
tentative correspondences, either defined in a nearest neigh-
bor sense, or

X (X,Y ; s) = {(x, y) ∈ X × Y : s(x, y) > δs}, (9)

When we do use a codebook that is large enough, tentative
correspondences (9) do not differ much from the one-to-one
scheme.

Coming back to geometry, we now assume features are
equipped with both position p and descriptor x. To sim-
plify notation, we represent a feature by either p or x alone,
depending on the context. We write the association as p =
p(x). Similarly, q = q(y) for a second image. Given a specific
set of correspondences X and the pairs of relevant positions
P = P(X ) = {(p, q) ∈ P ×Q : p = p(x)∧ q = q(y)∧ (x, y) ∈
X}, return to (1) and maximize w.r.t. transformation (B, t)
over a finite set of hypotheses H:

SR(P,Q;P, r) = max
(B,t)∈H

∑
(p,q)∈P

r(Bp+ t, q). (10)

When hypotheses are selected at random following a specific
strategy and spatial similarity is defined by a uniform ker-
nel rε(p, q) = 1‖p−q‖2<ε that just counts inliers, the above
result is not too different from RANSAC. Given appropri-
ate correspondences, it can jointly solve for alignment and
outliers.

3. FEATURE MAPS
Local patches. We assume here that each local feature is
additionally associated with an image patch L. Again, for
convenience, we represent a feature by p, x or L alone, de-
pending on the context. We write the association between
L and p as L = L(p). Similarly, R = R(q) for a second
image. Following Rothganger et al. [21], the patch is a par-
allelogram represented by matrix

L = L(p) =

[
a b p
0 0 1

]
, (11)

where p is now the center and a, b ∈ R2 are the vectors from
p to the midpoints of the two sides, as shown in Figure 1.
The rectified patch R0 is represented by the identity matrix
I3 and is transformed to the patch via L, while the patch is
rectified back to R0 via L−1. So L stands either for a patch
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Figure 1: Original and rectified image patch. Axes
are spatial, do not confuse with descriptor vectors
x ∈ X, y ∈ Y .

or an affine transform. The above formulation is equivalent
to local affine frames [5].

Single correspondence hypotheses. Given a patch
correspondence L ↔ R, the transformation from one patch
to the other is RL−1. If the two images are related via
a homography, and since by extraction patches are affine-
covariant, Köser et al. [15] extrapolate the transformation
to the entire image frame and study image alignment via
this single affine correspondence. Philbin et al. [19] further
observe that each correspondence provides a transformation
hypothesis. Hypotheses are now O(n) and we can enumerate
them all:

SH(P,Q;P, r) = max
A∈H(P)

∑
(p,q)∈P

r(Ap,q). (12)

Here, p, q denote the homogeneous coordinates of vectors p,
q that are 3-vectors in projective space P2, while A ∈ R3×3

is an affine transform that includes translation, unlike B in
(10). The set of hypotheses is now specified by the set of
correspondences, H(P) = {A = RL−1 : L = L(p) ∧ R =
R(q) ∧ (p, q) ∈ P}.

Feature set rectification. Instead of constructing trans-
formations RL−1 for all correspondences and performing
spatial matching at query time like Philbin et al. [19], we ex-
trapolate each local transform to the entire image frame and
rectify the entire set of features in advance. Let p(p̂) ∈ R2 be
the Euclidean counterpart of p(p̂) = L̂−1p for L̂ = L̂(p̂), that
is feature p rectified with respect to feature p̂ of the same
image. Also let P (p̂) = {p(p̂) : p ∈ P} be the entire rectified

feature set with origin p̂. Similarly define q(q̂) and Q(q̂) for
the second image, using R̂ = R̂(q̂). Figure 2 shows a random
feature set, a transformed and distorted version, and the rec-
tified counterparts with their origins in correspondence —
notice how the latter are roughly aligned. Under this formu-
lation, the same set of correspondences P, obtained solely
via descriptor matching, is used both for inlier counting and
aligning:

ŜH(P,Q;P, r) = max
(p̂,q̂)∈P

∑
(p,q)∈P

r(p(p̂), q(q̂)) (13)

= max
(p̂,q̂)∈P

I(P; p̂, q̂, r), (14)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Figure 2: Top left: A random set of patches.
Bottom left: The same set under affine transform,
where patch position and local shape are distorted,
and more patches are inserted. Right: The rectified
counterparts; origins are the two black patches on
the left. The polar grid specifies the spatial bin lim-
its for the feature maps, with τ = 0.95, kρ = 5 and
kθ = 12 (see section 6).

where I(·; p̂, q̂, ·) is the total count of inliers for hypothesis

(p̂, q̂). Due to multiplication by R̂−1 the similarity measure
is not the same as in (12), but in fact distance is now mea-
sured in a rectified coordinate frame and this seems more
appropriate. It makes sense to define the alignment score

A(P,Q;P, P̃, r) =
1

|P̃|

∑
(p̂,q̂)∈P̃

1I(P;p̂,q̂,r)>γ (15)

as the ratio of seed correspondences P̃ that give more than γ
inliers, hence contribute to alignment. Seed correspondences
may be set e.g. to the correspondences obtained via repeata-
bility or matching score [17]. While these scores focus more
on position and appearance respectively, alignment score is
significantly more sensitive to local shape. We have mea-
sured the alignment score of Hessian-affine [17] and SURF [1]
features on 50 pairs of images depicting the same scene from
different viewpoints. Varying γ from 5 to 10 inliers, Hessian-
affine drop from 18.4% to 14.2% and SURF from 16.3% to
13.4%. Observe that such performance may be of statistical
significance, since a single correspondence is enough for our
purpose. Despite not supporting affine transforms, SURF
appear to be applicable as well.

Quantization. Observe that unlike (12), the summand
of (13) assumes aligned features and resembles an overlap
measure. It looks like we could use some form of spatial
quantization in the rectified frames. Adopt the visual code-
book scheme of section 2 and further define spatial codebook
U ⊆ R2 with |U| = ku bins. Quantization can be uniform in
this case. However, encoding all positions in a finite set is
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Figure 3: Inliers between two sets of features. Each
inlier corresponds to a non zero term of the inner
product between corresponding feature maps. Black
lines connect inliers. Red line connects the origins.
Grey lines connect origins with inlier features.

not trivial; see section 6. Let u(p) be the quantized version
of position p, w = (v, u) a joint visual-spatial bin and, for
convenience, w(p) = (v(x), u(p)) the joint bin of feature p,

such that p = p(x). Then, for any rectified feature set P̂

(with any origin), let Hw(P̂ ) = {p ∈ P̂ : w(p) = w} be the

set of elements of P̂ mapped to bin w, and hw(P̂ ) = |Hw(P̂ )|
their count. Further, define the joint codebook W = V × U
with |W| = kvku = k bins. The joint histogram of any

rectified feature set P̂ , denoted as hW(P̂ ) ∈ Rk, may be
represented as

hW(P̂ ) =
∑
w∈W

hw(P̂ )ew =
∑
p∈P̂

ew(p), (16)

where {ew ∈ Rk : w ∈ W} is the standard basis of Rk, such
that ∀w,w′ ∈ W, eT

wew′ = 1w=w′ . Similarly to (8), defining
spatial similarity rU (p, q) = 1u(p)=u(q), (13) becomes

ŜH(P,Q;P, rU ) = max
(p̂,q̂)∈P

∑
w∈W

hw(P (p̂))hw(Q(q̂)). (17)

Using a visual codebook means that correspondences in X
are features x, y belonging to the same visual word. De-
fine V (X) = {v ∈ V : Hv(X) 6= ∅} as the set of visual
words present in a feature set and V (X,Y ) = V (X)∩ V (Y )
the common visual words of feature sets X, Y . Then, if
fP (x̂) = hW(P (p̂(x̂))) is the histogram of P ’s counterpart
that is rectified with respect to p̂(x̂), our overall image sim-
ilarity measure becomes

SF (P,Q;X,Y ) = max
v∈V (X,Y )

max
x̂∈Hv(X)
ŷ∈Hv(Y )

fT
P (x̂)fQ(ŷ). (18)

Feature maps. We call fP (x̂) the feature map of P with
origin x̂. The set FP = {fP (x̂) : p̂(x̂) ∈ P} is the feature
map collection of P . Along with the visual word representa-
tion {Hv(X) : v ∈ V}, this is all the information we store for
image (P,X). Visually, a feature map may be understood
as the assignment of rectified features in spatial bins, as on
the right of Figure 2. The exact bin layout is discussed in
section 6. There is a different map for each origin: we may
then think of each origin’s map as a local descriptor, that
encodes the global feature set rectified in a local coordinate
frame. Well aligned feature sets are likely to have maps with
a high degree of overlap.

Returning to the example of Figure 2, inliers of the two
rectified feature sets are the features lying in the same bins
of the joint histogram. These inliers are explicitly shown
as correspondences by black lines in Figure 3. Each inlier
corresponds to a non-zero term in the inner product of (18).
In fact, Figure 3 illustrates all correspondences of the two
feature maps having the two black patches as origins. Max-
imizing over all origins x̂, ŷ yields our image similarity of
(18), where potential origins are constrained to the same vi-
sual word. This similarity is the value of the inner product
for the best aligned pair of origins from the two images.

We see in (18) a clear separation between (a) alignment via
inlier count, based on spatial information (P,Q) and (b) cor-
respondence based on visual information (X,Y ). Each inlier
count is written as an inner product operation of two fea-
ture maps. This operation is reminiscent of our one-to-many
choice in (9); we could equally use a histogram intersection,
that we have seen to be more appropriate. On the other
hand, the one-to-many scheme increases the number of hy-
potheses and the chances of alignment. An apparent option
for speed and robustness is to use as origins x̂, ŷ only fea-
tures that map uniquely to visual words, as in [7]. Precisely,
add constraint hv(X) = hv(Y ) = 1 in the outer maximum
of (18).

We will refer to (18) as the feature map similarity (FMS)
between two images. If n is the average number of fea-
tures per image, the time required for the intersection op-
eration is proportional to the size of feature maps, that is
O(n). When the visual codebook is large enough and we use
unique origins as specified above, the maximum is taken over
O(j) combinations of features where j is the average num-
ber of common visual words. The total operation is typically
O(nj), and O(n2) in the worst case. Space requirements are
O(n) for a feature map and O(n2) for a collection in worst
case. Savings can be made by constraints on spatial proxim-
ity via range parameter τ , or selection of origins. Both are
discussed in section 6. A visualization of fast spatial match-
ing (FastSM) [19] and FMS feature correspondence using
SURF is shown in Figure 4.

Figure 4: Above: Inliers using FastSM with single
feature correspondence. Below: The same for FMS.
There are 35 and 32 inliers, respectively. Origins
shown in red circles with scale and rotation of the
feature. Inliers are shown in yellow lines.



4. FEATURE MAP HASHING
Equation (18) provides a very fast way for matching two
images. This is still not enough for indexing, though. The
inner product or intersection operation is O(n) with a sparse
representation and we will need a sketching function to pro-
vide an approximate similarity measure. Before we proceed,
let us first relax maximization over all combinations of fea-
tures. Given two feature map collections F , G representing
two images, and assuming there is a one-to-one correspon-
dence between features and feature maps, (18) gives

ŜF (F,G) = max
f∈F

max
g∈G

sF (f, g), (19)

where sF (f, g) is either inner product or intersection. Ob-
serve the similarity to one-to-many scheme of (7), where
summation is replaced by maximum. This implies that a
process for matching sets of features could be possibly ad-
justed to account for sets of feature maps. Locality sensitive
hashing typically provides a fast, unsupervised solution. We
give a short overview below, highlight the problems, and
then present our solution.

Locality sensitive hashing. As defined in [4], given
a feature space F (in our case F = Rk), by hash function
we refer to a random mapping h : F → H such that the
probability that two objects in F are mapped to the same
hash value in space H reflects their similarity. A locality
sensitive hashing (LSH) scheme is a distribution on a family
F of such mappings such that for all f, g ∈ F,

Prh∈F [h(f) = h(g)] = sF (f, g), (20)

where sF (·, ·) ∈ [0, 1] is a similarity measure. In our case
it should be in the form of either inner product or inter-
section, appropriately normalized either way. H depends
on this choice and remains yet to be specified. For an ar-
bitrary hash function h ∈ F , we define similarity measure
sh(f, g) = 1h(f)=h(g) such that Eh∈F [sh(f, g)] = sF (f, g).

A very interesting result of [4] is that for any similarity
function sF (·, ·) that admits an LSH family, distance 1 −
sF (·, ·) satisfies triangle inequality. We can use this result
to show that our similarity measure of entire feature map
collections as defined in (19) cannot admit an LSH family.
Assume inner product similarity sF (f, g) = fTg and take for
instance collections F = {f}, G = {g} and H = {f, g} for
feature maps f 6= g normalized such that ‖f‖ = ‖g‖ = 1 and

thus ŜF (·, ·) ∈ [0, 1]. Then, ŜF (F,H) = ŜF (H,G) = 1 and

ŜF (F,G) = fTg < 1, so that the triangle inequality is not

satisfied by 1− ŜF (·, ·). This implies that we should seek for
sketches of individual feature maps rather than collections,
as shown next.

Random permutations. A feature map is an extremely
sparse histogram. The number of features in a bin of a fea-
ture map is a random variable that, under uniform distribu-
tion in bins (a reasonable assumption at least for the spatial
part), is given by a Binomial distribution Bi(·;n, k−1). For
n, kv and ku in the order of 103, 105 and 102, respectively,
the expected value is in the order of 10−4. The bin count
thus typically takes values in {0, 1}. At this point, given a
feature map f , we define set f̄ ⊂ W containing only those
elements of W for which the respective bin in f is non-
empty: f̄ = {w ∈ W : fTew 6= 0}. The feature space now is
F = 2W , the set of all subsets of W. In this case, the inner
product and histogram intersection of two feature maps f ,
g are both very well approximated by |f̄ ∩ ḡ|.

This gives rise to min-wise independent permutations [3].
The hashing function here maps objects back to W, that is
H =W and h : 2W →W. Given a feature map f̄ ⊂ W, the
function is defined as h(f̄) = min{π(f̄)}, where π : 2W →
2W is a permutation chosen uniformly at random in a min-
wise independent family F . Then, for all f̄ , ḡ ⊂ W,

sF (f̄ , ḡ) =
|f̄ ∩ ḡ|
|f̄ ∪ ḡ|

= J(f̄ , ḡ), (21)

that is, f̄ , ḡ are mapped to the same value with probability
that reflects their Jaccard similarity coefficient.

Sketch matching. In practice, we can estimate sF (f̄ , ḡ)
by just approximating Eh∈F [sh(f̄ , ḡ)] in a statistical sense.
All we need to do is construct a set Π = { πi : i = 1, . . . ,m}
of m independent random permutations and represent each
feature map f̄ by map sketch f ∈ Wm,

f = f(f̄) = [min{π1(f̄)}, . . . ,min{πm(f̄)}]T. (22)

Define sketch similarity as simply as sK(f ,g) = m−‖f−g‖0,
that is, the number of elements that sketches f , g have in
common. When there is at least one such element, we say
that the sketches collide. If F = F(F ) = {f(f̄) : f ∈ F} is
the map sketch collection of F , then image similarity reduces
to sketch similarity

SM (F,G) = max
f∈F

max
g∈G

sK(f ,g). (23)

It is now straightforward to re-establish the constraints of
(18) into (23) and maximize over a limited subset of F×G
corresponding to features of the two images mapping to the
same, unique visual words. All we need to do is for each
origin of unique visual word v̂ to append v̂ to each element
w ∈ W of the relevant sketch. For two sketches to collide,
their origins should then be in correspondence as well. Since
each element w is also associated with one permutation π,
it is now represented by triplet (v̂, w, π).

Since m� n, (23) gives an extremely fast way of approx-
imating image similarity, with running time O(mj). Space
requirements in this case are O(mn) and savings can be
made by origin selection. What is more important, when
m is small enough, for all f ,g in a pair of unrelated im-
ages, sK(f ,g) — therefore SM (f ,g) as well — is zero with
high probability. This is because the probability of all m
hash values of two feature maps being different is (1−pj)m,
where pj is the Jaccard coefficient of the maps. A linear
scan over all images in the database would then give a very
sparse response. This gives rise to an inverted file structure
for sub-linear indexing, as detailed in section 6. On the other
hand, one may show that collision probability is boosted for
relevant images.

Sketching typically comes at the expense of low recall for
relevant images [7], which is exactly the reason it was first
used to detect near duplicate documents [3]. In our case
though, at least one feature map pair needs to collide in (23),
with probability approximately equal to npjpa[1−(1−pj)m],
where pa is the probability of precise alignment. With npj
being roughly the average number of inliers, it is quite likely
that the number of aligned inliers is on average npjpa > 1,
such that collision probability is boosted for relevant images.

As the alignment scores presented in section 3 imply, col-
lisions may appear for several pairs of feature maps between
two similar images. This fact is not captured by the max op-
erator in (23) which keeps the number of collisions for just



the best aligned pair. We therefore expect the sum over
collisions of all pairs of feature maps to better distinguish
relevant from non-relevant images and provide a better final
ranking.

SK(F,G) =
∑
f∈F

∑
g∈G

sK(f ,g). (24)

We will refer to this similarity measure (24) as feature map
hashing (FMH). Like (10) and matching with RANSAC, so
does (23) keep only the best transformation hypothesis in
order to count inliers. With the use of sum, (24) becomes
similar to (7) and the one-to-many voting scheme. However
by using as origins only features that map uniquely to visual
words it becomes similar to the one-to-one voting scheme.
In effect, we let each feature map of one set match at most
one feature map of the other set as in (23), however in (24)
we use the sum over all sketch similarities.

5. RELATED WORK
Normalizing a set of planar points in a reference coordinate
frame defined by a number of reference points is quite com-
mon. Examples are Bookstein and Kendall coordinates [10],
where the first two points are arbitrarily chosen as refer-
ence, effectively removing transformations up to similarity.
To deal with point correspondence and outliers, geometric
hashing [16] does the same for every possible combination of
reference points in the original set. Larger sets of reference
points are also considered to remove more complex trans-
formations, e.g. 3-point combinations for affine. Positions
are quantized as in our work. The complexity is such that
it is typically applied to a small number of prototypes for
recognition.

A single feature is enough to define each reference coor-
dinate frame in our work, so we can effectively decompose
all images in the database and the query image at query
time as well. Chum and Matas [5] also implement geometric
hashing with a single feature defining each reference frame,
but for each feature they encode local shape rather than ap-
pearance. We claim it is enough to take local shape into
account only when rectifying — on the other hand, we inte-
grate appearance in our joint codebook, rendering a feature
map very discriminative. A feature map, seen as a local
descriptor, is a concept very close to shape context [2], in
that the position of all neighboring points is quantized in a
log-polar map. However, geometric invariance is only based
on global measurements.

Philbin et al. [19] approximate RANSAC based on the
single correspondence assumption. This spatial verification
procedure is used to re-rank up to the top 1000 images.
We rather precompute rectified feature maps and relevant
sketches and integrate them in the index, so images re-
turned as similar to a query are already geometrically ver-
ified. Focusing on memory efficiency, Perdoch et al. [18]
vector-quantize local shapes without significant loss in preci-
sion. Jegou et al. [14] also focus on memory usage providing
very high index compression but precision is sacrificed.

Jegou et al. [13] make another attempt to integrate ge-
ometry in the index via weak geometric consistency (WGC).
They extend bag-of-words (BoW) voting by separately re-
coding log-scale and orientation differences between features.
Local shape is thus taken into account, though not extend-
able to handle affine transformations; feature position is lost
altogether. Baseline BoW and WGC are the two methods
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Figure 5: Distribution of radius ρ over 40K rectified
feature sets from 200 images of the European Cities
dataset (see section 7), containing 8M features. ML
fitting of Weibull distribution gives λ = 1.23 and κ =
68.7.

we consider in our experiments for comparisons with differ-
ent re-ranking options, see section 7.

There are numerous approaches that use hashing in im-
age retrieval, for instance pyramid match hashing [12] and
random histograms [9], without representing geometry. An
exception is Chum et al. [7], who represent local geometry via
geometric min-hashing (GmH). GmH uses mutual position
of features only to verify/reject collisions which is clearly
not sub-linear. Geometry is imposed on local neighborhoods
only, while in our work it is global and encoded directly into
the map sketch element. Origins are chosen randomly in
[7] and GmH is used on clustering and small object discov-
ery. We rather focus on general image retrieval and choose
origins amongst features that tend to be better aligned, as
described in section 6.

6. IMPLEMENTATION
Spatial quantization. In a rectified coordinate frame, we
encode positions in polar coordinates (ρ, θ). To ensure that
sensitivity to origin scale and orientation errors is indepen-
dent of distance from the origin, log-polar coordinates are
typical, as in [2]. In our case, due to sparsity induced by
hashing, it is more important to ensure uniform distribution
w.r.t. ρ. As shown in Figure 5, ρ’s distribution appears
experimentally close to a Weibull distribution Wb(·;λ, κ)
with λ and κ being the scale and shape parameters, respec-
tively, estimated via maximum likelihood [8]. Then, non-

linear transformation with the Weibull CDF ρ̂ = 1−e−(ρ/λ)κ

makes ρ̂’s distribution roughly uniform in [0, 1].
Since all large ρ values are mapped close to ρ̂ = 1 and

would otherwise be non-informative, we choose to ignore
them by constructing ρ̄ = (ρ̂/τ)1ρ̂∈[0,τ ] and discarding fea-
tures with ρ̄ = 0. Range parameter τ ∈ [0, 1] controls the
balance between local and global geometry. Finally, we uni-
formly quantize ρ̄ and θ in kρ and kθ bins over [0, 1] and
[0, 2π] respectively, such that kρkθ = ku. The spatial map-
ping (ρ̄, θ) is illustrated in the right part of Figure 2, where
the non-linear distortion near ρ̄ = 1 is visible.

Origin selection and memory requirements. Using
as origins only features that map uniquely to visual words
not only makes savings in memory requirements but also
speeds up the matching process. Further compression can
be achieved by choosing a limited number of features to be
used as origins. The role of origins is to provide geometric
alignment between the reference frames of two images. We
thus retain features assigned to visual words that are top
ranked w.r.t. alignment scores, as described in (15). Align-



Image representation

spatial bin id 5 bits
visual word id 18 bits
joint bin id 4 bytes
map sketch 200 bytes
map collection 40Kbytes

Inverted file

image id 16 bits
origin id 10 bits
both ids 4 bytes
total 40Kbytes

Table 1: Memory usage for image representation
using map sketch collections and for inverted file
per image indexed. Memory is calculated for kρ = 4,
kθ = 6, kv = 200K, ν = 200, m = 50 and a maximum
database size of 55K images.

ment is measured per visual word over a dataset, as an offline
process. As outlined in section 7 we vary the percentage of
visual words to retain such that performance is not severely
affected. Let ν be the average number of origins (or feature
maps) per image according to this selection strategy.

Memory requirements are summarized in Table 1. A map
sketch collection, which is the total representation for an
image, has ν map sketches on average, with m elements
each. A map sketch collection, thus, needs 40 Kbytes to be
stored. Each image would require νm entries in an inverted
file and 40 Kbytes of memory.

Indexing and filtering. To provide sub-linear access to
images, we pre-compute all map sketch collections and store
them in an inverted file structure. For each combination
of origin visual word v̂ ∈ V, feature bin w ∈ W, and sketch
permutation π ∈ Π, we store a mapping from triplet (v̂, w, π)
to a posting list of all relevant feature maps and associated
images found in the database.

At query time, we compute the map sketch collection of
the query image, extract all triplets (v̂, w, π), access the rele-
vant posting lists and construct a sparse vector of all feature
maps and images found therein, along with relevant counts.
In effect, for query sketch f and database sketch g, we esti-
mate similarity SK(F,G) without explicitly computing any
zero element of terms sK(f ,g) in (24). In the process, we
also keep the map pair (f ,g) of maximum similarity for each
database image. For a database of 50K images and m = 50
permutations, only about 2K images are retrieved with a
query time of about 50ms, on average.

Local optimization and re-ranking. The best match-
ing pair (f ,g) between query and database image gives us a
patch correspondence L↔ R, thus an initial estimate of the
transformation RL−1 from one image to the other. Even if
the estimate is rough, e.g. a similarity transformation us-
ing SURF features, we can still recover the correct affine
counterpart given at least three inliers. We use the initial
estimate as a seed for a single step of method 3 (iterative) of
LO-RANSAC [6]. We re-estimate model parameters using
a linear algorithm on the complete set of inliers found at
each iteration. We have found a maximum of 3 iterations to
be enough in our experiments. We re-rank a shortlist of fil-
tered images according to the final number of inliers found.
This process is one order of magnitude faster than fast spa-
tial matching (FastSM) [19]. The latter is what we use to
re-rank shortlists of BoW and WGC methods in our com-
parisons in section 7, since no initial estimate is available
in this case. Execution time for local optimization is 0.5ms
per image on average, with FastSM at around 8ms. Times
are measured on our own C++ implementation on a 2GHz

Quad Core processor.

7. EXPERIMENTS
Datasets. We have conducted experiments on two publicly
available datasets, namely Oxford Buildings1 and INRIA
Holidays2, as well as on our own European Cities3 dataset.
The first two are small in size (5K and 1.4K images respec-
tively) and typically combined with large sets of unrelated
distractor images crawled from Flickr via common user tag
queries. European Cities consists of 50778 geo-tagged im-
ages from 14 European cities, crawled from Flickr using ge-
ographic queries covering a window of each city center. A
subset of 778 images from 9 cities are annotated into 20
groups of images depicting the same scene, building or land-
mark. Since not all are landmarks, annotation cannot rely
on tags; it is rather a combination of visual query expansion
and manual clean-up. Five images are selected as queries
from each group, for a total of 100 queries. The remaining
50K images from the other 5 cities are the distractors. Most
of them depict urban scenery like the ground-truth, mak-
ing a challenging distractor dataset. Sets of query images
selected for evaluation are depicted in Figure 6, while a rep-
resentative image from each group of the annotated set is
presented in Figure 7. Sample images from the distractor
set of 50K images are presented in Figure 8.

Figure 6: Selected query images of four groups from
European Cities dataset used in the evaluation.

Evaluation protocol. Our focus has been on demon-
strating the benefit from global geometry indexing. Our ex-
periments do include comparisons to baseline bag-of-words
and other methods to index and rank according to geometry.
In all experiments, we have resized images to a maximum
resolution of 500×500 pixels. We have extracted SURF fea-
tures [1] and kept a maximum number of n = 1000 features
per image. We use a kv = 200K visual codebook trained
from a set of images of urban scenes that are not part of our
evaluation datasets. Approximate k-means [19] was used
for codebook creation. Our BoW implementation uses dot

1 http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
2 http://lear.inrialpes.fr/ jegou/data.php
3 http://image.ntua.gr/iva/datasets/

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://lear.inrialpes.fr/~jegou/data.php
http://image.ntua.gr/iva/datasets/


Figure 7: Representative images from all groups of
the European Cities dataset used in the evaluation.

Figure 8: Sample distractor images from European
Cities dataset.

product similarity on L1-normalized vectors including tf-idf
weighting. Our WGC implementation uses no prior knowl-
edge for scale and orientation. We evaluate overall perfor-
mance via mean average precision (mAP).

Tuning. Experimenting on the ground truth images of
European Cities, we have found sketch length m = 50 to be
a good compromise between high recall and sparse enough
responses. mAP measurements on the 100 queries of the
same dataset for τ = 0.95 in Table 2 show best performance
for intermediate levels of spatial quantization. Coarse bins
loosen spatial matching and retrieve more distractors, while
fine ones increase sensitivity to feature alignment. We have
chosen kρ = 4 and kθ = 6. Similar range parameter τ ex-
periments indicate stable performance in [.5, .95]. We have
selected τ = 0.7 as a compromise between global geometry
representation and space requirements.

We use the 778 annotated images from European Cities
dataset to measure alignment per visual word as described

kρ × kθ 2× 3 4× 6 8× 12 16× 24

mAP 0.663 0.689 0.648 0.618

Table 2: Mean average precision for different spa-
tial quantization levels using FMH on the European
Cities dataset with m = 50 and τ = 0.95.

ν 720 500 300 200 100

mAP 0.687 0.682 0.678 0.676 0.642

Table 3: Mean average precision for varying average
number of origins ν on the European Cities dataset.

in section 6 and vary the percentage of visual words to retain.
We measure mAP over the 100 query images. Table 3 shows
mAP for varying average number of origins ν. When using
as origins only features that map uniquely to visual words,
without any other selection strategy, ν is 720 on average. We
finally force ν to be equal to 200 by choosing the appropriate
percentage of visual words, as a good compromise between
performance and memory requirements.

Results. Figure 9 presents the comparison of the pro-
posed approach with bag-of-words (BoW) and weak geomet-
ric consistency (WGC)[13] on the European Cities dataset
with and without re-ranking, for a varying number of dis-
tractor images. BoW with FastSM is exactly the method
proposed in [19]. FMH clearly outperforms other methods
showing a benefit from global geometry indexing, especially
at larger scale. It is rather surprising that precision stabi-
lizes at the high end of database sizes. For re-ranking we
have allowed a shortlist of 1000 images for local optimiza-
tion with FMH, which takes less time than 100 images for
FastSM with BoW and WGC, that is, on average, 500ms and
800ms respectively. Figure 10 shows example queries and
ranked retrieved images from the European Cities dataset
with 50K distractors using FMH without re-ranking. When
using BoW without any geometric information more false
images are retrieved and in a higher rank as shown in Fig-
ure 11. Despite the use of geometry in FMS false correspon-
dences may appear due to “noisy” visual words as in the
example of Figure 12. However this is not always a problem
in our retrieval process. A false image would also need to
get a vote after hashing with random permutations (FMH).
This is not usually the case for maps with 3 or less inliers
with FMS. Finally the re-ranking procedure can filter out
such an unsuccessful example.

Table 4 summarizes similar results on the Holidays and
Oxford. Without distractors, FMH ranks slightly higher
on Holidays but is outperformed by WGC on Oxford. On
the contrary, FMH clearly outperforms all other methods on
both datasets in the presence of the 50K distractors of Euro-
pean Cities, with or without re-ranking. The effect appears
more evident on Oxford, possibly because of the same type
of urban scenes in the distractor dataset.

Our score for BoW on Oxford dataset (0.372) is not di-
rectly comparable to the best score (0.618) achieved in [19],
which is using a specific codebook generated from the query
dataset. It is rather directly comparable to the score in
[20] (0.403) where the codebook is generated from another
dataset, as in our case. However more losses are induced by



Figure 10: Sample queries and ranked retrieved images from European Cities dataset with 50K distractors
using FMH without re-ranking. False images are depicted in a red bounding box.

Figure 11: Sample queries and ranked retrieved images from European Cities dataset with 50K distractors
using BOW without re-ranking. False images are depicted in a red bounding box.
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Figure 9: Mean average precision for varying
database sizes on the European Cities dataset for
BoW, WGC and FMH, with and without re-ranking.

Figure 12: Example of unsuccessful matching with
FMS. Origins shown in red circles with scale and
rotation of the feature. Inliers are shown in yellow
lines.

Dataset Holidays Oxford
Method 1.4K 51.4K 5K 55K

BOW 0.583 0.492 0.372 0.329
WGC 0.591 0.510 0.375 0.333
FMH 0.610 0.542 0.362 0.362

BOW+FastSM 0.622 0.537 0.421 0.356
WGC+FastSM 0.626 0.542 0.436 0.388
FMH+LO(100) 0.639 0.556 0.422 0.391
FMH+LO(1000) - 0.571 0.431 0.410

Table 4: Mean average precision for INRIA Holidays
and Oxford Buildings datasets, with and without the
distractors. FastSM is performed on the 100 top-
ranked results. LO on both 100 and 1000 top-ranked
results. Outperforming method shown in boldface.

the fact that we keep 1000 features at maximum from each
image. Our scores for BoW and WGC on Holidays dataset
are comparable to the ones in [13], (0.572) and (0.611) re-
spectively, where a generic codebook is used as well.

Retrieval from our inverted index may incur losses for
three reasons: feature misalignment, spatial quantization
and hashing. Performing all queries on European Cities in-
cluding distractors, we have quantified each as a percentage
of the ground truth images. Feature misalignment accounts
for the 8% not retrieved at all from the index, on average.
Another 10% is then lost due to spatial quantization. Fi-
nally, hashing is responsible for another 3%.

8. DISCUSSION
To our knowledge, the present work is the first to integrate
appearance and global geometry in sub-linear image index-
ing, while being invariant to affine transformations and ro-



bust to occlusion. We consider our experiments successful
because we make spatial matching work at large scale, and
demonstrate how this keeps precision almost unaffected un-
der a significant amount of distractors.

We have found precision to be mostly limited by the very
assumption that makes geometry indexing feasible: that
a single feature correspondence is enough for image align-
ment. We see it as a challenge for future feature detec-
tors to achieve better alignment score. We have developed
our methodology for affine transformations, and this is be-
cause state of the art feature detectors are affine covariant.
Extending e.g. to homography would be straightforward,
should such features mature.

We find the feature map representation the most impor-
tant contribution of this work. We foresee a new research di-
rection in applying this concept to problems like large scale
object recognition and detection, where geometric consis-
tency and invariance are as crucial as in retrieval. More can
be found at our project homepage4.
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