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Abstract 

The systematic analysis of corrosion damage on cultural heritage objects is an aspect of multidisciplinary interest. The 

application of computer-aided approaches in corrosion control has recently become a challenging issue. However, the majority of 

researches attain to estimate the decay presence by evaluating colour and texture alterations. This paper is geared towards 

investigating non-destructive detection and quantification of stone degradation by using machine vision schemes. The contribution of 

the current work is 4-fold. Thus, (1) several detection schemes were developed, each handling in a different way the background in-

homogeneity. (2) Numerous statistical metrics were introduced to quantify corrosion damage. These metrics mainly consider the 

decay areas size, spatial distribution, shape and darkness. (3) The potential of several monitoring modalities in determining corrosion 

attributes is studied, and (4) the corroded areas’ shape features are considered in association with the cleaning and structural state that 

they represent. 

1. Introduction 

The most frequently observed corrosion phenomena 

encountered on sheltered surfaces is black crust. Black crust is 

mainly associated with the formation of gypsum (CaSO4.2H2O). 

Further to the discoloration of stonework, black crusts also 

accelerate degradation phenomena due to their catalyzing 

activity. The colour alterations, as well as the structural effects 

on the stone material, are dependent upon the duration of 

exposure and the chemical composition of the substrate. The 

most frequently encountered constituents in black crusts are 

carbonaceous particles, heavy metals, calcite, silicates, 

potassium nitrate and various organic compounds in lower 

concentrations [1]. 

Black crusts do not form homogeneous varnished layers, 

but are rather composed of small black particles sporadically 

located within the matrix of encrustation [1]. These black 

particles are responsible for the coloration of the crust. Small 

white particles, often observed in the body of black crusts, are 

mainly associated with the presence of gypsum crystals and re-

crystallized CaCO3. All these aspects indicate that chemical 

cleaning is important not only for the restoration of aesthetical 

damage but also for preventing further degradation, which may 

lead to structural disintegration and loss of stone material. In 

order to select the appropriate cleaning approach and the time of 

intervention, an accurate diagnosis process should be followed. 

The diagnostic procedures employed thus far involve ablation of 

the specimen under consideration and subsequent chemical 

analyses to assess the severity of degradation and the type 

(composition) of deposits. However, this process is destructive 

to the material, so that the development of non-destructive 

approaches able to provide reliable results on both the severity 

and the type of degradation is an issue of great importance. 

1.1 Related Work 

Non-destructive analysis methodologies provide 

powerful tools in the fields of material science and artwork 

analysis. These techniques have been extensively used recently 

for characterizing the cleaning state and/or the structural 

integrity of aerospace materials. However, little work has been 

done in assessing corrosion damage on stonework. The intricacy 

of the problem stems from the specific features of corrosion 

phenomena i.e. influences of various pollutant factors along 

with the great diversity of litho-type and the corresponding 

variations on decay phenomenology. An early attempt to 

segment degraded areas on metals was performed in [2], where 

decay effects are inspected by eddy currents and infrared 

thermography. The information gathered is subsequently fused 

with the use of statistical and/or probabilistic algorithms. More 

recent researches [3] approach corrosion damage on metals by 

introducing morphological analysis of decay patterns to aid the 

characterization and classification of deterioration type. A 

related study reported in [4] is focused towards recognizing the 

various defects encountered on a cold mill strip. Several Image 

Processing (IP) techniques have been developed for identifying 

and reconstructing corrosion damage on old paintings [5]. IP 

approaches have been also partially employed to detect decay 

effects on stonework. In [6], back-scattered electron images 

obtained with scanning electron microscopy-energy dispersive 

X-rays analysis were used to identify and quantify salts and 

porosity with depth in porous media. Moreover, methods for 

characterizing the stone structure and detecting regions of 

material loss were developed in the study of Moltedo et al. [7], 

while Boukouvalas et al. [8] introduced computer vision 

techniques for the detection and classification of mineral veins 

on ceramic tiles surfaces.  

Besides the comparison of several algorithmic 

approaches, we also investigate how exposure or even cleaning 

conditions are reflected in the size and the relative intensities of 

corroded areas (over the background). This aspect is approached 

by using statistical tests to assess the significance of differences 

observed in the decay characteristics of the examined structures. 

These tests also contribute in evaluating the efficiency of 

chemical cleaning as well as in understanding the procedures of 

decay evolution. The testing framework involves image data 

sets of degraded stone surfaces screened by the Fiber Optics 

Microscope (FOM), Reflectography in the visible spectral band 

and Digital Camera. Shape features of the segmented decay 

areas are also a significant characteristic, which has been 

studied throughout this work. The initial objective of our 

approach is to investigate whether the structural or cleaning 

state are reflected onto the decay areas shape.  

2. Problem Specification 

2.1. Experimental Setup 

The studied images represent degraded stone regions 

monitored via a FOM, a reflectography system operating at the 

visible spectral band and a digital camera. The FOM images 

depict sheltered and unsheltered areas obtained from the 

columns of the National Archaeological Museum (Athens), 
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while the digital camera images represent a stone specimen 

depicting adjacent cleaned and uncleaned stripes. The FOM 

images are further subdivided (due to their location) into 

reedings and flutings, to study the different degradation and 

structural effects encountered on surfaces of different exposure 

to weathering conditions. Thus, reedings represent areas more 

exposed to the rain and winds’ action and consequently the 

black crusts occurring on these areas tend to be thinner than the 

corresponding crusts encountered on the adjacent flutings 

surfaces. On the other hand, unsheltered surfaces tend to 

develop more lamellar texture and crusts thinner in thickness. 

The latter observation can be explained by taking into account 

the water activity that results in removing the deposited 

materials. In this work, the cleaning effects are evaluated in 

terms of 4 well-known cleaning interventions. Namely we have 

employed (a) an ion-exchange resin paste with de-ionized water 

(DS); (b) a biological paste (BP), (c) a WMB approach and an 

Nd:Yag laser cleaning system. The potential and the limitations 

of these methods have been investigated in greater detail in our 

previous works [11], [9], [10]. The severity of degradation is 

assessed in terms of the size of the detected decay areas and the 

alteration of the relative (over the background) intensities on 

areas of corrosion damage.  

Aiming at studying the effectiveness of the segmentation 

algorithms in detecting various types of corrosion defects we 

selected representative images, where we also extracted the 

Ground Truths (GTs). The images were selected with the aid of 

the experts, to reflect the deterioration encountered in a variety 

of environmental conditions [9]. 

3. Overview of the Developed System 

As it was stated in the introduction of the paper, the 

detection problem is approached by developing several image 

segmentation schemes to determine accurately the exact 

location, size and shape of decay areas [9]. The implementation 

of an automated framework to derive the GTs and evaluate the 

efficiency of the detection approaches is also supported in our 

system. Finally a shape analysis methodology was implemented 

to investigate the associations between decay areas shape and 

the structural or cleaning state that they represent. Section 3 

discusses briefly the operations supported in this work.  

3.1. Overview of the Detectors Architecture  

In an effort to design an effective detection scheme 

several aspects associated with the potential of the monitoring 

system and the structural features of the stone material should 

be considered. Thus, the detection scheme should be well 

adapted to the expected extent and shape features of the decay 

patterns. A further issue is the background structure on locations 

where decay patterns occur. The typically low contrast between 

decay areas and the background, which sometimes 

approximates the in-homogeneity contrast of the stone structure, 

itself, should also be carefully considered. Furthermore, due to 

the growth of the decay areas, there is no lower bound to this 

contrast. Obviously, the segmentation algorithm must be as 

sensitive as possible to the systematic variations caused by 

decay areas presence while suppressing all these random 

variations induced by noise and by the background stone 

structure. This means that the detection approach should take 

into account dynamically the intensity distribution of the local 

background. To provide robust segmentation results, the 

peculiarities of the problem must be thoroughly considered in 

the design of effective segmentation approaches. 

Based on the above specifications, we have developed 

several algorithmic schemes each of which considers in a 

different way the background in-homogeneity. Thus, the 

implemented algorithms can be classified into different 

categories depending on the way that they handle the 

background in-homogeneities [9]. The first step towards the 

implementation of an efficient spot detector is to decouple the 

detection of useful information from the background activity. 

This is achieved by the first algorithmic approach, which 

employs a broadband high-pass filter to enhance the decay areas 

location and remove the general structure of the background. 

The segmentation process in this first approach is conducted 

through a simple thresholding technique that sets a global 

threshold from the statistical analysis of the entire image. The 

disability of such methods to eliminate the induction of false 

positive and false negative spots leads to the employment of the 

next category that uses adaptive thresholding schemes. Thus, we 

tested algorithmic approaches that perform thresholding based 

on characteristics of the local background structure using also 

some knowledge of the extent and spatial arrangement of decay 

patterns. All the above methods, however, use information from 

the histogram of the sub-regions in order to select an 

appropriate threshold. A fundamental limitation of such 

approaches is that they completely ignore information regarding 

the spatial relations of intensity values. In order to overcome 

this limitation, we also tested a local region growing 

segmentation approach. The basic goal here is to select local 

thresholds dynamically, based on an iterative evaluation of the 

labeling quality achieved by each threshold value. At each 

iteration, the initially selected area is grown according to a 

thresholding similarity predicate aiming at producing compact 

areas, while avoiding the merging of different regions. In an 

effort to further reduce the segmentation errors introduced due 

to the local background variations, we also implemented a more 

elaborate growing scheme that uses prior knowledge of the 

expected size of spots and the inter-spot distance. This 

procedure is quite reliable in detecting spot locations even in 

low contrast between the spot and its background. However, the 

detected shape is distorted and the boundary of the individual 

spots is smoothed. In order to address the effective shape 

detection of decay spots, we tested a category of local 

morphological operators. This approach preserves the original 

spot shape, at the price of more false positive spots and merged 

spots that should be separated. In order to exploit the strength of 

both concepts (accurate topology detection and shape 

preservation) a morphological fusion algorithm was 

implemented that expands the areas detected by the local region 

growing approach up to the size derived by the morphological 

operators [9], [10], [11].  

3.2. Evaluate the Potential of the Detection Schemes 

Our work estimates the robust points and the drawbacks 

of each detection methodology through an automated 

framework, which was built to perform this task objectively. 

This framework guarantees reliable and objective estimation of 

segmentation algorithms’ performance while it allows informed 

experimental feedback for the design of improved segmentation 

schemes. As it could be expected, the responses of the tested 

detection schemes divert in their potential to approach the 

topology, extent and shape of decay areas [9]. More 

specifically, some of them tend to split segments into adjacent 

small in size spots. Others succeed in providing reliable 

information concerning the topology of decay patterns, while 

distorting their extent and shape. The objective of the 

performance evaluation stage is to assess the potential and the 

limitations of the recruited algorithmic schemes in segmenting 

degradation patterns, while exploiting individual features 

associated with the robust points and the drawbacks of each 

approach.  
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3.2.1. Ground Truth Matrix Extraction 

The extraction of (GT) involves fusion of the areas 

segmented by all the algorithms. The fusion takes place by 

examining the implemented algorithms in pairs and extracting 

the overlapping segments. The non-overlapping segments 

obtained at each stage are subsequently checked towards the 

results of a consecutive algorithm. The process proceeds until 

all methods have been examined. Figure 2 shows that the 

Ground Truth stems from the union of the Non-Overlapping 

(obtained when the process terminates) and the total 

overlapping labels, derived at each step of the extraction 

approach. Through a brief visual inspection of the segmented 

degraded regions, it can be verified that the total overlapping 

patterns, correspond to areas larger in extent than the non-

overlapping. However, the experts considered that the non-

overlapping areas should also be present in the Ground Truth as 

these spots correspond to regions that are likely to represent 

decay effects. Figure 2 illustrates the steps followed to 

determine the Ground Truth Matrix. The process identified 

under the term “Manage Segmented Areas” corresponds to the 

procedure illustrated in figure 1. 
 

 
Figure 1:  Check for overlap spots and processing the partially overlapping 

labels. 

 
Figure 2: Flowchart of the Ground Truth Extraction Approach. 

3.3.2. Performance Evaluation 

The segmentation of an image through an algorithmic 

approach (AS) is compared towards the Ground Truth (GT) 

specification of that image to count instances of correct 

segmentation, under-segmentation, over-segmentation, missed 

regions, and noise regions. The algorithms’ performances and 

their potential are estimated, in this work, through studying the 

Receiver Operating Characteristic (ROC) curves [9]. The ROC 

curves are obtained by modifying the thresholds within 

meaningful ranges and subsequently calculating instances of 

correct and incorrect segmentation. 

3.3. Extraction of Shape Features 

Following to the detection of the areas of interest and the 

determination of their boundaries, we also extract boundary 

sequences as contour-based shape representations. The 

boundary sequences are defined as an ordered sequence of 

boundary pixel locations in clockwise order. The extraction 

method has proven to work well even if a shape has holes.  

3.3.1. Shape Features from Boundary Sequences 

In this section we provide an overview of the boundary 

sequence extraction approach employed to detect hole regions 

and nested areas within segments. According to the literature, if 

a region R includes holes 
m21 H,H,H L  then it can be 

expressed as: 

( ) ( ) ( ) ( )m1 HBSHBSRBS:RBD →→→ L  

The boundary sequence extraction method scans the image in a 

raster-scan manner as in TV. There are three different states of 

current scan pixel, p in a scan line as follows and the state 

transition diagram is presented in the figure below. 

regionholepS

regionforegroundpS

regionbackgroundpS

∈
∈
∈

:

:

:

2

1

0  

The state transition diagram is initialized when a new 

line starts and finishes at location of end-pixel in the scan line 

starts (state E). 

 
Figure 3: State Transition Diagram 
 

When a new object region or a new hole region is extracted, 

pixels of extracted boundary sequence are marked with 

appropriate label that is assigned differently to each object 

region and each hole region. The boundary sequence can be 

extracted by a boundary following operation [12]. A nested hole 

counter is used to determine which state is the next one when a 

background pixel is found in S1. The transition conditions are 

summarized as follows.  

• a, d: When a foreground or a labeled pixel is met.  
• b: When a background pixel is met and the nested   count is  
zero.  

• c: When a background pixel is met and the nested count is 
not zero.  

• e: When there remain only the background pixels in the 
current scan line.  

• f: When no background pixel is found. In each state, 
following operations are performed.  

• S0: When a foreground pixel is found, a new boundary 
descriptor for the new object region is generated through 

boundary following.  

• S1: When a background pixel is found, a new hole boundary 
sequence for the hole region is generated through boundary 

following. The hole boundary sequence is attached to 

appropriate boundary descriptor.  

• S2: When a foreground pixel is found, a new boundary 
descriptor for the new object region in a hole is generated 
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When the segments’ boundary sequence is extracted the 

perimeter, compactness and moments can be easily computed. 

The Euler number is defined as the number of components 

minus the number of holes in region R.  

( )HN1E −=                                                                               (1) 

The presented results summarize our system’s response 

when dealing with surfaces of different degradation state. 

Subsequently, we investigate the algorithms’ potential to detect 

decay on images acquired through various monitoring 

modalities capturing decay characteristics at various scales. A 

further issue approached through statistical evaluation is the 

cleaning state and/or the conditions of exposure and whether 

they are reflected on the size of corroded areas and their relative 

intensities over the background. Due to their stochastic 

distributions, the alterations on the darkness of decay spots are 

investigated through t-tests, while alterations on decay patterns’ 

sizes are examined through non-parametric rank sum tests 

(Mann Whitney U-test). Finally, at the end of the results section 

we briefly discuss the associations between the degradation 

state and the corresponding decay areas shape. 

4. Results 

Through this work, the evaluation of the algorithmic 

results is performed by both qualitative and quantitative means. 

Visual evaluation implies inspection of the segmentation results 

by the experts. The examined properties are the existence of 

true decay spots as well as their size and shape. The visual 

evaluation has been performed on the basis of 45 FOM images. 

Statistical evaluation is performed using several statistical 

metrics to assess the severity and extent of degradation. 

4.1. Visual Inspection and Quantification of Decay  

This section presents and discusses several results, 

demonstrating the performance of the employed detection 

schemes. Figures 4 and 5 depict black crust located on a 

sheltered and unsheltered fluting respectively. It is readily 

observed that the algorithms sufficiently distinguish the 

deterioration patterns related to the presence of black and white 

particles. According to the experts, the detected areas (number 

and size) are in good accordance with their own judgment of 

deterioration patterns prevalence in the image [11]. Even the 

spatial distribution of small black particles, which are derived 

by the algorithm in the vicinity of polished sections of black 

crusts, are expected in such formations. A further study of the 

detection results illustrated on figures 4 and 5 reveals that larger 

number of decay patterns is segmented on sheltered untreated 

flutings. 

      

          
Figure 4: (a) Sheltered untreated Fluting monitored by FOM, (b) black 

particles detected on (a), (c) white particles detected on (a). 
 

Such assessments are in accordance with the experts’ 

judgments [11]. The detection results derived when studying 

treated surfaces are also visually inspected by the experts and is 

evidenced that that the deterioration patterns are eliminated after 

the application of chemical cleaning methods [10]. At this point 

we should state that the images presenting deterioration state 

after chemical cleaning illustrate areas adjacent to the untreated 

black crust shown in figures 5 and 6.  
 

    

     
Figure 5: (a) Unsheltered untreated Fluting monitored by FOM, (b) black 

particles detected on (a), (c) white particles detected on (a). 
 

The degradation phenomena on the studied images are 

quantified by measuring the number of spots, the percentage of 

area covered by such spots and their average size and spatial 

distribution. In order to increase the reliability of statistical 

measures concerning the spatial distribution of spots prior and 

after cleaning with various methods, we adopt a statistics 

consideration on many image sub-regions. Table 1 depicts the 

percentage of surface covered by black particles. Several 

conclusions can be drawn from the results of Table 1. Sheltered 

surfaces and flutings show more severe degradation phenomena 

than their unsheltered counterparts. These results can reasonably 

well be interpreted by the fact that sheltered areas and column 

flutings accumulate the atmospheric deposition, while 

unsheltered areas and column reedings, being more exposed to 

rain and wind action, show lower amounts of decay effects. The 

qualitative (visual) and quantitative measures extracted from 

our analysis methodology can be further used to assess the 

capability of chemical intervention methods [11].  
 

Table 1: Mean percentage of the studied surface covered by black particles 

 Diagn. BP DS  

(30 min) 

DS 

(60min) 

WMB 

Shelt.    Flut 3.75 0.04  0.45 0.04 

Shelt.    Reed. 1.73 0.05  0.06  

Unshel. Flut 0.53  0.04   

Unshel.  Reed. 0.29  0.04  0.02 

4.1.1. Inspection by Various Monitoring Modalities  

As it was stated previously, one of the objectives of this 

work was to assess the effectiveness of the implemented 

algorithms under different monitoring systems [11]. Figure 6(a) 

illustrates a stone surface depicted by the digital camera, while 

(b) and (c) shows the segmented black and white spots. Figures 

7 (a) through (c) depict the same surface monitored under the 

reflectography in the visible spectral band and the black and 

white particles detected on it. As it can be seen, treated and 

untreated stripes co-exist on the stone specimen.  

   
Figure 6: (a) Stone material (monitored by a digital camera) demonstrating 

cleaned and un-cleaned stripes, (b) Black particles detected, (c) white 

particles detected.  

(a) (b) (c) 
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Optical inspection by the experts on Figures 6 and 7 

verifies that the topology of the detected black particles, their 

spatial distribution as well as their shape and size closely 

resemble to their own judgment of sporadic particle presence. A 

more dissect inspection of Figures 6(c) and 7(c) though, reveals 

the detection of white decay spots even on treated regions. 

According to the experts’ assessment, these spots are associated 

to regions of material loss. The above false positive induction 

illustrates the inability of the monitoring systems to distinguish 

between areas where gypsum prevails and other areas where 

material loss occurs. This limitation arises from its low 

magnification rate as it becomes difficult to view the inter 

particle area between adjacent black spots and thus to accurately 

locate areas of gypsum or CaCO3 presence. A further 

explanation of the false positive detection is associated to the 

operation of the reflectography screening system and is 

discussed in more detail in [11].  

   

 
Figure 7: (a) Stone material (monitored by a refectography system (vis)) 

demonstrating cleaned and un-cleaned stripes, (b) Black particles detected, 

(c) white particles detected. 

4.2. Tests of Statistical Significance 

Visual evaluation of the segmentation results verified 

that the main attributes of corrosion that are significantly altered 

due to cleaning or exposure conditions are the sizes of the decay 

areas and their relative darkness over the background. More 

specifically, it was revealed that more severe degradation 

phenomena are basically associated with the presence of larger 

in extent and darker corrosion patterns. To establish the 

occurrence of such associations, we employ tests of statistical 

significance to prove or disprove the existence of alterations. 

The significance of alterations on the sizes of decay patterns is 

assessed through the Mann Whitney U-test, while intensity 

variations are considered through t-tests.  
In both the parametric and the non-parametric tests we 

always consider as null hypothesis that the first of the two 

populations has a distribution of intensities or area sizes laid on 

lower levels, while the alternative hypotheses claims the 

opposite. To prove or disprove the tested hypotheses we use 

one-sided statistical test. Thus, when the t-value or the U-value 

is larger than the critical values, then the null hypothesis is 

rejected in favor of the alternative hypothesis, supporting the 

claim of different distributions. Tables 2 and 3 summarize the 

results derived after the application of the T-test and the Mann-

Whitney U-test respectively. The results presented in tables 2 

and 3, reveal that the cleaning methods attain to eliminate 

significantly the size of corrosion patterns and their relative 

darkness over the background. This observation is valid for 

almost all tests (cleaning strategies), except for the case where 

unsheltered reedings are cleaned by the DS method. This 

supports the conclusions derived by the chemical analysis [11], 

according to which DS performs only mild cleaning and 

minimizes material loss. Furthermore, according to the results, 

the black particles detected on sheltered flutings are always 

larger in size and darker than the corresponding spots detected 

on any other of the studied surfaces. Moreover, table 2 reveals 

that decay patterns segmented on sheltered flutings are darker 

than the corresponding patterns detected on sheltered reedings. 

An effort to investigate whether a similar observation is also 

valid for the unsheltered areas revealed that the observed 

differences on the relative intensity values among unsheltered 

flutings and reedings is marginally significant (test 10, table 2). 

This conclusion also agrees to the chemical reports [11]. 
 

Table 2: Comparative study on the significance of intensity alterations. 

 Algorithmic Response 

1. Shelt. Flut. (Ds)       (vs)     

Shelt. Flut. (Diag.) 

Df= 34  Crit t (1-tail)=1.691 

t= 25.76 

2. Shelt. Flut. (WMB) (vs)  

Shelt.   Flut. (Diag.) 

Df= 33    Crit t (1-tail)=1.692 

t= 62.41 

3. Shelt. Flut. (BP)       (vs)    

Shelt. Flut. (Diag.) 

Df= 27   Crit t (1-tail)=1.703 

t= 33.90 

4.  Shelt. Reed. (Ds)     (vs) 

Shelt. Reed. (Diag.) 

Df= 9       Crit t (1-tail)=1.833 

t= 12.59 

5. Shelt. Reed. (BP)      (vs)     

Shelt. Reed. (Diag.) 

Df= 8      Crit t (1-tail)=1.860 

t= 12.72 

6. Shelt. Reed. (Diag.)  (vs)    

Shelt. Flut. (Diag.) 

Df= 28     Crit t (1-tail)=1.701 

t= 13.44 

7. Unshel. Flut. (Diag.) (vs)    

Shelt.  Flut. (Diag.) 

Df= 34     Crit t (1-tail)=1.691 

t= 47.96 

8. Unshelt. Flut. (DS)   (vs) 

Unshelt. Flut. (Diag) 

Df= 22     Crit t (1-tail)=1.717 

t= 7.75 

9. Unshel. Flut. (Diag.) (vs)   

Shelt. Reed. (Diag.) 

Df= 16     Crit t (1-tail)=1.746 

t= 16.35 

10. Unshel.Reed. (Diag) (vs)   

Unshelt. Flut. (Diag.) 

Df= 22     Crit t (1-tail)=1.717 

t= 4.57 

11. Unshelt. Reed. (Ds)  (vs)  

Unshelt.  Reed. (Diag.) 

Df= 9       Crit t (1-tail)=1.833 

t= 7.57 

12. Unshel.Reed.(WMB)(vs)  

Unshelt.  Reed. (Diag.) 

Df= 9       Crit t (1-tail)=1.833 

t= 8.42 

 
Table 3:Comparative study on the significance of decay areas size 

alterations 

 Algorithmic Response 

1. Shelt. Flut. (Diag)    (vs)  

Shelt. Flut. (Ds) 

N1 =24   N2 =12  (U=252 Ucrit =74)   

P= 5.92*10
-5 

2. Shelt. Flut. (Diag)    (vs)   

Shelt. Flut. (WMB) 

N1= 24   N2=6    (U=144 Ucrit = 27)   

P=1.6x10
-6
 

3. Shelt. Flut. (Diag)    (vs) 

Shelt. Flut. (BP) 

N1=24    N2=6    (U=144 Ucrit = 27)   

P= 1.6x10
-6 

4. Shelt. Reed. (Diag)  (vs) 

Shelt. Reed. (DS) 

N1= 6     N2=6    (U= 36  Ucrit = 3)     

P= 10.8x10
-4 

5. Shelt. Reed. (Diag)  (vs) 

Shelt. Reed. (BP) 

N1= 6     N2=6    (U= 36  Ucrit = 3)     

P= 10.8x10
-4
 

6. Shelt. Flut. (Diag)    (vs) 

Shelt. Reed. (Diag) 

N1= 24   N2= 6   (U= 0    Ucrit = 27)   

P= 1.6x10
-6
 

7. Shelt. Flut. (Diag)    (vs) 

Unshelt. Flut. (Diag) 

N1= 24   N2=12  (U=218 Ucrit = 74)   

P= 7.9x10
-10
 

8. Unshel. Flut. (Diag) (vs) 

Unshelt. Flut. (Ds) 

N1= 12   N2=12  (U=144 Ucrit = 31)   

P=3.6x10
-7
 

9. Shelt. Reed. (Diag)  (vs)  

Unshelt. Flut. (Diag) 

N1= 6     N2=12  (U= 62   Ucrit = 9)     

P= 6.7x10
-3 

10. Unshel. Flut.(Diag)  (vs)   

Unshel. Reed. (Diag) 

N1= 12   N2= 6   (U= 72  Ucrit = 9)     

P= 5.3x10
-5 

11. Unshel.Reed. (Diag) (vs) 

Unshel. Reed. (Ds) 

N1= 6     N2= 6   (U= 24  Ucrit = 3)     

P= 0.19 

12. Unsh. Reed.(Diag)   (vs) 

Unshel. Reed.(WMB) 

N1= 6     N2= 6   (U= 36  Ucrit = 3)     

P= 10.8x10
-4
 

13. Shelt. Reed. (Diag)  (vs)   

UnShelt. Reed.(Diag) 

N1= 6     N2= 6   (U= 36  Ucrit = 3)     

P= 10.8x10
-4
 

4.3. Evaluating the Algorithms’ Performance 

In this work, we consider the ROC curves as robust 

measures for evaluating the algorithms’ performance [9]. 

Throughout this subsection, we briefly discuss the performance 

curves derived for the most representative case of corrosion 

damage occurrence (sheltered untreated fluting). This case 

corresponds to a surface demonstrating a rapidly varying 

background structure. Figure 8 depicts the algorithms’ 

(a) 
(b) 

(c) 

(c) 
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performance through the ROC curves and reveals that the 

Conditional Thickening and the Region Growing algorithms 

perform generally better than the others.  This characteristic 

reflects the algorithms’ potential to perform efficient detection 

irrespective of noise levels and variations over the background. 

 
Figure 8: ROC curves depicting the performance of the implemented algorithms 

in the case of the sheltered untreated fluting (illustrated in figure 4). 

4.4. Shape Features Analysis 

As it was discussed earlier, an objective of the current 

work is to examine how the cleaning and structural conditions 

are reflected onto the shape of the segmented decay areas. An 

important feature revealed through our analysis, is the 

occurrence of hole-regions within segments. According to the 

experts this is a remarkable characteristic, which reflects the 

prevalence of discontinuities in the body of black crusts. More 

specifically humidity affects the structure of black crusts due to 

the dissolution of the gypsum. This phenomenon can be 

observed (in the micro-scopical scale) by the occurrence of 

white spots within the body of black crusts. Through this 

subsection we attempt to investigate associations between the 

occurrence of hole-regions and the exposure of the stone 

material/or its cleaning state. Thus, table 4 presents the fraction 

of decay areas including hole-regions. This measure provides an 

initial general view of the phenomenon. 
 

Table 4:  Percentage of the segmented decay patterns containing holes into 

their areas. 
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containing holes (%) 

4.97 2.29 0 0.88 0 

Direction of the segmented decay areas, as an 

attribute of the corrosion state, is also evaluated. Thus, the 

decay areas orientation is considered through measuring the 

direction of their axis of least inertia [12]. Through this study, 

we attempt to estimate whether the decay patterns tend to be 

oriented towards specific directions. To investigate the 

occurrence of directionality we measure the standard deviation 

on the distributions of orientations. The derived results indicate 

that decay patterns prevailing on unsheltered areas tend to be 

more oriented than the corresponding patterns segmented on 

sheltered areas. This may reflect the effect of water’s fluency. 

5. Conclusions 

This work is geared towards investigating aspects of 

non-destructive detection and quantification of corrosion 

damage on stonework. The studied surfaces are monitored via 

the aid of several imaging modalities. More specifically, we use 

a Fiber Optics Microscope (FOM), a Digital Camera, and a 

reflectography system operating at the visible spectral band. 

Several algorithms are tested to detect decay patterns. Thus, one 

of the initial objectives of this work is to study the efficiency of 

the implemented algorithms in accurately determining the exact 

location of decay patterns, as well as their size and shape 

features. The performance of the algorithmic schemes is 

assessed through studying the ROC curves. From the 

performance evaluation [9] it is revealed that the efficiency of 

each algorithm is closely related to the background structure.  

Further to validating the algorithms’ performance, this 

work also investigates the efficiency of the cleaning 

interventions. Several statistical tests are employed to estimate 

whether the cleaning approaches attain to reduce the crusts’ 

thickness and the extent of corroded areas. The results derived 

from the statistical tests indicate that all the cleaning methods 

attain to reduce the crusts thickness and the extent of the 

corroded areas. Furthermore, it is revealed that thicker crusts are 

encountered on sheltered untreated flutings. This conclusion is 

also in accordance to the experts’ opinion.  

Finally, we study whether the structural or cleaning 

effects are reflected onto the decay patterns shape. Our analysis 

revealed that corroded areas segmented on unsheltered areas 

tend to be oriented towards specific directions. Moreover, the 

occurrence of hole-regions in the segmented degradation 

patterns is also investigated. This work indicated that decay 

areas with more hole-regions prevail on areas of more severe 

degradation. According to the experts, this effect is closely 

related to the discontinuities encountered in black crusts and 

arises due to the dissolution of gypsum by the walls’ humidity.  
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