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Abstract

The property of transitivity is one of the most important for fuzzy binary relations,
especially in the cases when they are used for the representation of real life similarity
or ordering information. As far as the algorithmic part of the actual calculation of
the transitive closure of such relations is concerned, works in the literature mainly
focus on crisp symmetric relations, paying little attention to the case of general fuzzy
binary relations. Most works that deal with the algorithmic part of the transitive
closure of fuzzy relations only focus on the case of max-min transitivity, disregarding
other types of transitivity. In this paper, after formalizing the notion of sparseness
and providing a representation model for sparse relations that displays both compu-
tational and storage merits, we propose an algorithm for the incremental update of
fuzzy sup-t transitive relations. The incremental transitive update (ITU) algorithm
achieves the re-establishment of transitivity when an already transitive relation is
only locally disturbed. Based on this algorithm, we propose an extension to handle
the sup-t transitive closure of any fuzzy binary relation, through a novel incremental
transitive closure (ITC) algorithm. The ITU and ITC algorithms can be applied on
any fuzzy binary relation and t-norm; properties such as reflexivity, symmetricity
and idempotency are not a requirement. Under the specified assumptions for the
average sparse relation, both of the proposed algorithms have considerably smaller
computational complexity than the conventional approach; this is both established
theoretically and verified via appropriate computing experiments.
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1 Introduction

Fuzzy binary relations and their properties have an important role in mod-
elling of information in various scientific and applied fields. With descriptive
power ranging from the simple representation of information [47] to the rep-
resentation of ontological [28] and multimedia structures [2][34], the fields of
application of fuzzy relations are countless. A field in which these relations
have a very special role is that of fuzzy information retrieval [10][12][39]. In
that framework, fuzzy relational knowledge representation can contribute to
tasks such as query expansion [3], document analysis [4][40], multimedia anal-
ysis [38], user profiling [41] and others.

In most cases, the fuzzy relation property that is most important for the repre-
sentation of real life information is that of transitivity ; continuous Archimedean
transitivity is a property that describes the propagation of information in a
very natural and intuitive way. Therefore, it is only natural that numerous ref-
erences in the literature discuss the representation [23][26][31] and theoretical
properties of transitive binary relations [11][13][15][16][17][18][24][35][45].

The transitive property of binary relations, due to its physical meaning, is
closely related to the study of graphs. In that framework, transitive closure
of a relation is equivalent to the detection of the pairs of vertices that are
either directly connected or connected via some path. Thus, the majority of
existing literature on transitive closure algorithms and has focused mainly
on the cases of undirected crisp graphs [33] and crisp graphs [9][32][36][43],
most of which are based on the work of Warshall [44]. In [37], in addition to
the computational complexity of the process of the transitive closure, its I/O
complexity is examined as well; this study, similarly to the the ones mentioned
above, is also limited to the crisp case.

Transitive closure of general fuzzy binary relations has also been treated in
the literature. See, for example, [14][27][29]. In the latter two an impressive
complexity of O(n2) is achieved; a result already accomplished in [19] with
a different methodology. The application of all four reported algorithms is
limited to similarity, i.e. symmetric and reflexive relations, and to the case of
max-min transitivity, i.e. to a single non Archimedean case. Overall, not many
works in the literature attempt to tackle the sup-t transitive closure of general
fuzzy binary relations; most of the attention is focused solely on the case
of max-min transitivity. (Exceptions to this can be found in [20][21].) More
importantly, there are no references in the literature specializing in the case of
sparse relations ; as the binary relations considered in the fields of ontological
representation and fuzzy information retrieval are both sparse and large, the
handling of sparse transitive relations is an issue with gaining importance.
This is the topic of this paper.
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Given the size of the considered binary relations, their representation is an
equally important problem to that of their handling. Specifically, the memory
required for the storage of an n×n relation becomes prohibitive, as n surpasses
some reasonably small threshold; we may overcome this problem with the uti-
lization of a sparse representation format, since these relations are typically
very sparse; this of course adds an overhead to the time required to access a
specific element.In this paper we formalize the notion of sparseness and provide
a representation model for sparse relations that displays both computational
and storage merits. Based on this representation model, we develop an algo-
rithm for the computationally efficient incremental update of fuzzy transitive
relations; the incremental transitive update (ITU) algorithm focuses on the
re-establishment of transitivity when an already transitive relation is only lo-
cally disturbed, and is suitable for any type of sup-t transitivity and any type
of fuzzy relation. Based on this algorithm, we propose an extension to handle
the sup-t transitive closure of any fuzzy binary relation, through a novel incre-
mental transitive closure (ITC) algorithm; this algorithm is computationally
efficient and has some unique properties. Under the specified assumptions for
the average sparse relation, both of the proposed algorithms have considerably
smaller computational complexity than the conventional approach; this is both
established theoretically and verified via appropriate computing experiments.

The structure of this paper is as follows: In section 2, after formally defining
what “sparse relation” means in this work, we present the sparse represen-
tation model we follow, as the properties of this data model directly affect
the properties of the algorithms to follow. Continuing, in section 3 we discuss
the properties of the conventional transitive closure algorithm, when com-
bined with the representation model presented in section 2. In sections 4 and
5 we present the two algorithms that we propose. Specifically, in section 4 we
present our approach for incremental update of a binary relation and discuss
its storage and computational merits and in section 5 we extend our discussion
to explain how this can be utilized to handle the complete transitive closure
of a relation as well. Section 6 lists some indicative experimental results that
support and validate our theory and section 7 lists our concluding remarks.

2 Representation of sparse relations

2.1 Assumptions on sparseness

Binary relations can be used to model numerous aspects of the real world.
Depending on the case, the considered relations may display various formal
mathematical properties, such as associativity, reflexivity, transitivity of one
form or another and so on. The specification of each one of these properties is
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an objective task, which makes it feasible to discriminate between the different
types of relations and handle them in different ways.

On the other hand, some subjective properties are often important in real
life relations. The most important among them is sparseness; sparse relations,
although having the same objective properties as their dense counterparts, are
“best” handled using totally different approaches. By “best” we do not refer
to the validity of the methodologies applied, as their results are identical, but
rather to their efficiency as far as storage and computational resources needed
are concerned.

As sparse relations play an important role in various fields, specialized data
models and corresponding algorithms have been developed just for them; one
of the most important problem with such data models and algorithms is their
evaluation. Traditionally, the efficiency of a data structure or algorithm is
measured using its storage and computational complexity, which is closely
related to its operation in the worst possible case. This is of course inapplicable
for the case of models and algorithms that have been designed for the sparse
case, as, by definition, the notion of worst case is contradictory to that of
sparseness.

Thus, in order to make the evaluation possible, we typically refer to the per-
formance in the average, rather than the worst case scenario. This, in turn,
demands that we can formally define the statistical properties of the average
case. In this work, driven by the statistical characteristics of sparse relations
appearing in the field of ontologies, we define the average case for sparse rela-
tions as follows:

Let n = |S| be the cardinality of the universe of discourse. A small and
constant percentage pr of the rows and pc of the columns of an n × n typical
sparse relation may be non zero. Thus, we have O(n) non zero rows and O(n)
non zero columns. Additionally, the count of non zero elements contained in
a non zero row or column is proportional to the logarithm of the count of all
the elements in the relation. Thus we have O(log n) non zero elements in each
non zero row and column. Overall, we have O(n log n) non zero elements in
the relation.

2.2 Proposed sparse representation

A fuzzy binary relation defined on a set S containing n distinct elements can be
represented using a square matrix of dimension n×n. The physical storage of
such an array requires the representation of n2 different decimal values, which
for large numbers of n is prohibitive for a practical implementation. On the
other hand, in such a representation access to a specific element of the array
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has a computational complexity of O(1), as the position of the element in the
array directly specifies its position in storage as well, with the utilization of a
formula of the form M = [(i−1) ·n+(j−1)] ·d+O where (i, j) is the position
of the element in the matrix, M is its actual position in storage, O is an offset
specifying the position of the first element of the array in storage and d is the
space allocated for each element. As already explained, the utilization of such
a representation is not always possible. In cases where the relation is known to
be sparse, i.e. only a small subset of the elements of the corresponding array
are non zero, then a sparse array implementation can be used to overcome the
storage problem.

Conventional sparse array implementations utilize linked lists to represent
elements, thus raising the computational complexity of accessing a specific
element from O(1) to O(n). In this case, although the storage requirements are
much smaller, the representation model remains inapplicable for time critical
applications, where complex operations utilizing a binary relation have to be
performed before the system response is determined, and number n is large.

The representation model proposed in order to overcome these limitations is
as follows: a binary relation is represented using two AVL trees ; an AVL tree
is a binary, balanced and ordered tree that allows for access, insertion and
deletion of a node in O(log m) time, where m is the count of nodes in the tree
[1]. If n log n nodes exist in the tree, as will be the case for the typical sparse
relation, then the access, insertion and deletion complexity is again O(log n)
since n < n log n < n2 ⇒ O(log n) ≤ O(log(n log n)) ≤ O(log n2) = O(log n).

In both trees, both row index i and column index j are utilized to sort the
nodes lexicographically; however, the first tree, the row-tree, is sorted accord-
ing to index i, and in case of common row positions i, column position j is
utilized, and vice versa for the second tree, the column-tree. The following
array illustrates this representation:




(1, 2) (1, 5) (1, 6)

(2, 1) (2, 4) (2, 5)

(3, 2)

(4, 4) (4, 6)

(5, 1) (5, 4)




For this array, elements can be ordered based first on index i and then on
index j as follows:

[(1,2), (1,5), (1,6), (2,1), (2,4), (2,5), (3,2), (4,4), (4,6), (5,1), (5,4)]T
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Fig. 1. Example of a row-tree, ordered by index i.

Fig. 2. Example of a column-tree, ordered by index j.

Similarly, elements can be ordered based first on index j and then on index i
as follows:

[(2,1), (5,1), (1,2), (3,2), (2,4), (4,4), (5,4), (1,5), (2,5), (1,6), (4,6)]T

The vectors above can then be represented as AVL trees, as shown in figures
1 and 2, depicting the corresponding row-tree and column-tree, respectively.
Of course the trees are not unique, as more than one balanced binary trees
can be created when the count of elements is not equal to (2k − 1) for some
k ∈ N .

This representation model preserves the storage merits of the conventional
sparse matrix implementation using linked lists. Moreover, access time to a
specific element, row or column of the relation has a computational complexity
of O(log n), which is considerably lower than the linear complexity of the
conventional linked lists approach. Finally, the complexity of insertion and
deletion is also O(log n); note that both trees have to be kept up-to-date after
each insert, delete or update operation.
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3 Conventional sup− t transitive closure of fuzzy binary relations

3.1 Conventional algorithm using complete representation

A transitive closure of a fuzzy binary relation can be performed with a com-
plexity of O(n4), where n = |S| is the dimension of the relation matrix, uti-
lizing the methodology reported in [46], as described below.

In the general case, the transitive closure Trt(R) of relation R, given some
t-norm, can be calculated as

Trt(R) =
n−1⋃

f=1

Rf (1)

where Rf can be calculated recursively as

Rf = Rf−1 ◦t R (2)

R1 = R (3)

As a special case, when relation R is reflexive, it is proven that the transitive
closure is given by equation

Trt(R) = Rn−1

thus making the calculation of the sup of equation 1 unnecessary [25].

The following lemma provides the basis for the calculation of the computa-
tional complexities of relation operations using the complete representation
model:

Lemma 1: When the complete representation model is utilized, the calcula-
tion of the sup Rsup = sup(R1, R2) and composition Rcomp = R1 ◦t R2 of two
relations R1 and R2 of dimension n × n have computational complexities of
O(n2) and O(n3), respectively.

Proof: An element Rsup(i, j) of the sup is calculated as

Rsup(i, j) = sup(R1(i, j), R2(i, j))
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An element Rcomp(i, j) of the sup-t composition is calculated as

Rcomp(i, j) =
n⋃

c=1

R2(i, c) ∧t R1(c, j)

The former is an O(1) operation and the latter an O(n) operation. As the
outputs of the sup and composition have a dimension of n× n, n2 such oper-
ations need to be performed, thus concluding in overall complexities of O(n2)
and O(n3), respectively.

2

From this lemma, it is easy to conclude the following:

Lemma 2: In the case of complete representation, the calculation of the tran-
sitive closure of two relations following the methodology of [46] as described
above has a computational complexity of O(n4)

Proof: In the calculation of the transitive closure of a reflexive relation, Rn−1

needs to be calculated. Using the methodology described by equations 2 and
3 this is performed in n− 1 compositions. The previous lemma provides that
each one of these compositions is performed with a computational complexity
of O(n3), thus resulting in an overall complexity of O(n4) for the calculation
of Rn−1, which is the transitive closure of relation R.

In the process of calculation of Rn−1, all Rf , f ∈ Nn−1 are calculated as
byproducts. Thus, for the calculation of the transitive closure in the general
(not necessarily reflexive) case what is additionally needed is the calculation
of the sup described by equation 1. According to the previous lemma, the
sup of two relations is calculated in O(n2). In total, n − 2 such calculations
are required, resulting in a computational complexity of O(n3). Thus, the
overall computational complexity for transitive closure using this methodology
is O(n4) + O(n3) = O(n4).

2

Dunn has proposed a computationally enhanced algorithm to calculate the
transitive closure of a fuzzy binary relation, with a complexity of O(n3 log n)
[20]. This algorithm relies on the recursive self composition of the relation
matrix until transitivity is achieved.

Specifically, the transitive closure of a relation R is given as:

Trt(R) =
⋃

Rf
∗ , f ∈ {1, 2, 4, 8, .., 2F}, F ≥ n− 1 (4)
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where

R1
∗ = R

Rf
∗ = (Rf/2

∗ ◦t Rf/2
∗ ) ∪Rf/2

∗ , f ∈ {2, 4, 8, ..} (5)

The complexity of this approach is given by the following lemma:

Lemma 3: The transitive closure using the methodology of [20] as described
above has a computational complexity of O(n3 log n).

Proof: In order to calculate the sup described in equation 4 we need to per-
form O(log n) relation unions, each one having a complexity of O(n2), as shown
earlier.

Calculating the additives of the sup recursively according to equation 5 start-
ing from the ones corresponding to lower values of f , each one is calculated in
one composition and one addition, thus with a complexity of

O(n3) + O(n2) = O(n3)

This calculation will end when we have reached a value of f such that F ≥ n−1
holds. Thus, O(log n) such calculations are adequate. Overall, this results in
a complexity of

O(log n) ·O(n2) + O(log n) ·O(n3) = O(n3 log n)

2

Dunn’s extension is considered as the classical approach to the sup-t tran-
sitive closure of fuzzy binary relations. In the remaining of the paper, term
conventional algorithm for transitive closure will refer to Dunn’s extension.

The sup-t transitive closure of fuzzy binary relations can be calculated in as
little as O(n3) time using more efficient algorithm implementations [30]:

Algorithm O(n3) sup-t:

Parameters: R

9



Output: R

(1) for i = 1 . . . n
(a) for j = 1 . . . n

(i) for k = 1 . . . n

R(j, k) ← sup(R(j, k), R(j, i) ∧t R(i, k))

The original formulation of this algorithm can be found in [21] and is based on
the use of selectors [8] and the star decomposition rule [6][7]. This algorithm,
unlike Dunn’s approach, cannot be extended to efficiently support a sparse
representation model, and is thus inadequate to provide for meaningful com-
parisons against the methodology developed in this work. Therefore, in this
work we shall consider the conventional approach in all comparative study
experiments and comments.

3.2 Conventional algorithm using sparse representation

As we have already mentioned, the characteristics of the representation model
utilized reflect on the characteristics of the applied algorithms as well. Thus,
when it comes to the conventional algorithm of transitive closure, the following
holds:

Theorem 1: The complete transitive closure is achieved with computational
complexity O(n2 log2 n) and O(n3 log n) in the average and worst case, respec-
tively, when using the proposed sparse representation.

Proof: During a step of relation composition in the sparse representation
case, if row i and column j exist in the relation, i.e. if they have at least one
non zero element, they are retrieved. As already explained, retrieving a row or
column has a complexity of O(log n). Continuing, the corresponding element
Rcomp(i, j) is calculated as

Rcomp(i, j) =
⋃

R(i, c) ∈ ri

R(c, j) ∈ cj

R(i, c) ∧t R(c, j)

where ri and cj are the sets of non zero elements of the i-th row and j-th
column, respectively. As the row and column are both available in a sorted by
index form, this is an O(|ri| + |cj|) operation, where |ri| is the count of non
zero elements in row i and |cj| is the count of non zero elements in column j.
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For a single composition kr · kc such operations will be performed, where kr

is the count of non zero rows and kc is the count of non zero columns of the
relation. Overall, the complexity for a single composition is

O(log n) + O(log n) + O(kr · kj) · [O(|ri|+ |cj|) + O(log n)]

where the last O(log n) factor corresponds to the complexity of the insertion
of an element in the output relation.

In the average case for sparse relations, a small percentage of the rows and
columns will be non zero. Of course, although this may affect the execution
time required, it does not alter the complexity, as

O(kr · kc) = O((pr · n) · (pc · n)) = (pr · pc) ·O(n2)) = O(n2)

where constants pr and pc is the percentage of non zero rows and columns
respectively. As far as the count of elements contained in a non zero row or
column is concerned, as has already been mentioned in subsection 2.1, this is
assumed to be proportional to the logarithm of the count of all elements in
the relation. Thus O(kr · kj) = O(log n). Overall, this leads to a complexity of

O(log n) + O(log n) + O(n2) · [O(log n) + O(log n)] = O(n2 log n)

for the composition.

In the worst case, all the elements of the relation exist. In that case, kr = kc =
|ri| = |cj| = n, and thus the complexity of the composition becomes

O(log n) + O(log n) + O(n2) · [O(n) + O(log n)] = O(n3)

Considering the O(log n) compositions required by the conventional method-
ology for the transitive closure, it is straightforward that in the average case
the complete transitive closure has a computational complexity of O(n2 log2 n)
and in the worst case O(n3 log n).

2

3.3 Comparative study

As far as the computational complexity of the transitive closure algorithm is
concerned, it is O(n3 log n) for the complete representation and O(n2 log2 n)
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Table 1
Summary of computational complexities of conventional composition and transitive
closure algorithms

Algorithm Data model Sparse relation Dense relation

Composition Complete n3 n3

Composition Sparse n2 log n n3

Transitive Closure Complete n3 log n n3 log n

Transitive Closure Sparse n2 log2 n n3 log n

and O(n3 log n) for the sparse representation, in the average and worst case, re-
spectively. It is worth noting that the proposed sparse representation achieves
enhanced computational complexity in the sparse case, without loosing in ef-
ficiency in the dense case.

As far as storage requirements are concerned, using either of the two rep-
resentation models, i.e. complete representation or the sparse representation
proposed herein, the existence of two copies of the relation in memory during
the execution of the transitive closure algorithm is required. The storage re-
quirements of the two approaches, though, are fundamentally different in the
case of sparse relations:

(1) In the conventional approach n2 elements are represented for each copy
of the relation, leading to the need for 2 · n2 distinct elements being
represented. This is an O(n2) space.

(2) In the proposed approach 2 trees are represented, each containing as many
nodes as the relation at hand. In the average case of sparse relations this
results in 2 · O(n log n) nodes, leading to an overall storage complexity
of 4 · O(n log n) = O(n log n) for the two trees. In the worst case O(n2)
storage space is required, as in the conventional approach.

Table 1 summarizes the above conclusions on computational complexity of
conventional composition and transitive closure algorithms, using complete
and sparse representations. One can easily see that the proposed representa-
tion model is ideal for the case of sparse relations, as they have been defined
in section 2.1, as it can lead to enhanced computational and storage complex-
ities, even when using algorithms that have not been designed especially for
the sparse case.

4 Incremental closure of fuzzy binary relations

A major disadvantage of the utilization of the conventional transitive closure
methodologies is that when for some reason an element of the relation is
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Fig. 3. Graphical representation of the incremental update of the transitive relation.

updated, or when a new entity is inserted to the global set S and linked to
some existing entity, thus locally disturbing transitivity, a computationally
demanding operation needs to be performed again in order to re-establish the
transitivity property.

4.1 Conventional re-establishment of transitivity

Theorem 2: When a new element is inserted to the relation, or when an
element of the relation is updated, and assuming the conventional approach
to transitive closure, an O(n2 log n) operation is adequate in order to assure
that the relation remains transitive in the average case. In the worst case the
complexity is O(n3 log n).

Proof: Let R be a transitive relation. In Fig. 3 non zero elements of R are
represented using continuous lines of type 0. Let as suppose that R(i, j) is
inserted in the relation, or that its value is augmented. In Fig. 3 the update is
represented using dash - dot lines of type 1. Then, we can no longer assume
that relation r is transitive.

After one self-composition, the ancestor a of i is linked to j and i is linked to
the descendant d of j. In Fig. 3 this is represented using dashed lines of type
2. Finally, after one more self-composition, a is linked to b. In Fig. 3 this is
represented using doted lines of type 3.

As R was initially assumed transitive, two compositions will always be enough
to assure transitivity. Thus, the complexity of the operation that re-establishes
transitivity can be as low as that of the composition: O(n2 log n) in the average
case and O(n3) in the worst case, as established in the theorem’s proof in
section 3.

2
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4.2 The incremental transitive update (ITU) algorithm

Having observed in Fig. 3 the way in which transitivity is achieved after a
single element has been altered, we can design an algorithm for incremental
update of transitive relations that has a considerably smaller computational
complexity. Specifically, the incremental transitive update (ITU) algorithm
only focuses on the changes that the self composition brings upon the relation
after the update of the single element.

For a given relation R, when the updated element is the one between entities
i and j, this can be achieved with the following steps:

Algorithm ITU:

Parameters: R i j

Output: R

(1) Identify the fuzzy set A of ancestors of entity i in relation R. Degrees in
A are determined as A(s) = R(s, j), s ∈ S.

(2) Identify the fuzzy set D of descendants of entity j in relation R. Degrees
in D are determined as D(s) = R(i, s), s ∈ S.

(3) For each element s appearing in A assign

R(s, j) ← sup(R(s, j), A(s) ∧t R(i, j))

(4) For each element s appearing in D assign

R(i, s) ← sup(R(i, s), R(i, j) ∧t D(s))

(5) For each element s1 appearing in A and s2 appearing in D assign

R(s1, s2) ← sup(R(s1, s2), A(s1) ∧t R(i, j) ∧t D(s2))

When the algorithm terminates we have R = Trt(R).

If relation R is reflexive, then R(i, i) = 1 and R(j, j) = 1 and thus A(i) = 1
and D(j) = 1. In this case, the above process can be simplified by omitting
steps (3) and (4), as they are included in step (5).

Theorem 3: The computational complexity of the incremental update al-
gorithm is O(log3 n) in the average case and O(n2 log n) in the worst case,
for both reflexive and non reflexive relations, assuming the proposed sparse
representation model.

Proof: The complexity of steps (1) and (2) is O(log n), as computation of an
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element’s ancestors or descendants requires access to a column or row of the
relation, respectively. The complexity of steps (3) and (4) is O(|ri|) ·O(log n)
and O(|cj|) · O(log n), respectively, and the complexity of step (5) is O(|ri| ·
|cj|) ·O(log n).

In the average case |ri| = O(log n) and |cj| = O(log n), and thus the over-
all complexity is 2 · O(log n) + 2 · O(log2 n) + O(log3 n) = O(log3 n). In the
worst case |ri| = O(n) and |cj| = O(n), and thus the overall complexity is
2 · O(log n) + 2 · O(n log n) + O(n2 log n) = O(n2 log n). Ignoring the influ-
ence of steps (3) and (4) in the above calculations does not alter the overall
complexity, as in all cases step (5) contributes more to it. Thus, the same
complexity holds for the reflexive case as well.

2

Of course, it is easy to extend algorithm ITU in order to make it applicable
to the case of complete representation as well:

Algorithm ITU for complete representation:

Parameters: R i j

Output: R

(1) For every element s1 in column i
(a) For every element s2 in row j

Assign:

R(s1, s2) ← sup(R(s1, s2), R(s1), i ∧t R(i, j) ∧t R(j, s2)) (6)

Theorem 4: The computational complexity of the incremental update algo-
rithm is O(n2), assuming a complete representation model.

Proof: When using the complete representation model, the relation is repre-
sented as an n × n array. Thus, there are n elements in each row and each
column. Since equation 6 describes simply two intersections, it is performed
in O(1) time. Overall, we have a complexity of

O(n) ·O(n) ·O(1) = O(n2)

2

What remains to be established is that the output of the proposed ITU algo-
rithms is indeed transitive. This proof is spit in two sections:

Lemma 4: If relation R is sup−t transitive on S, then it is also sup−t
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transitive on S ′ ⊇ S.

Proof: A fuzzy relation R defined on S is called sup−t transitive if

R(x, z) ≥ sup
y∈S
{t(R(x, y), R(y, z))}, ∀(x, z) ∈ S2

If x ∈ (S ′ − S), then R(x, z) = 0. In this case

sup
y∈S′

{t(R(x, y), R(y, z))} = sup
y∈S′

{0, R(y, z))} = 0

and thus transitivity on S ′ holds. Similarly if z ∈ (S ′ − S).

If (x, z) ∈ S2, then

sup
y∈S′

{t(R(x, y), R(y, z))} =

= sup(sup
y∈S
{t(R(x, y), R(y, z))}, sup

y∈(S′−S)
{t(R(x, y), R(y, z))})

= sup(sup
y∈S
{t(R(x, y), R(y, z))}, 0)

= sup
y∈S
{t(R(x, y), R(y, z))}

Since R is transitive on S,

R(x, z) ≥ sup
y∈S
{t(R(x, y), R(y, z))} = sup

y∈S′
{t(R(x, y), R(y, z))}

and thus transitivity holds.

2

With this lemma we have established that extending the universe with the
addition of new elements, as the ITU does when needed, does not damage the
property of transitivity for the already existing relations. We may now split
the operation of ITU in two steps:

(1) insert new elements in the universe of discourse (if needed)
(2) augment the value of a link between existing elements

According to lemma 4, only the second one of these steps affects transitivity
and needs to be considered. Thus, we can limit our examination of the validity
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of the ITU algorithm to the case where an existing link of the relation is aug-
mented (the initial link can have any value in the [0 1] range). With the next
lemma we conclude the proof by establishing that ITU correctly re-establishes
transitivity what an existing link in the input relation is augmented.

Lemma 5: Let R be a transitive relation on S. Let also i, j ∈ S. ∀q ∈ [01],
relation R1 is defined as

R1(x, z) =





max(R(i, j), q), x=i and z=j;

R(x, z), otherwise.

Then relation R′, calculated as R′ = ITU(R1, i, j), is transitive.

Proof:

If R(i, j) ≥ q from construction R′ = R and thus transitivity holds. If R(i, j) <
q ⇒ R′(i, j) > R(i, j). We then we need to prove that

R′(x, z) ≥ sup
y∈S

t(R′(x, y), R′(y, z)),∀(x, z) ∈ S2 (7)

For y such that R′(x, y) = R(x, y), easily

sup
y:R′(x,y)=R(x,y)

t(R′(x, y), R′(y, z)) =

= sup
y:R′(x,y)=R(x,y)

t(R(x, y), R(y, z))

≤ R(x, y)

≤ R′(x, y)

Focusing on the remaining cases of y such that R′(x, y) > R(x, y), the proof is
based on the observation that the ITU algorithm only affects specific elements
of the relation.

Let X = 0+A. This is the strong 0-cut of fuzzy set A of ancestors of i and
contains elements of S that participate in A to non zero degrees. Similarly, let
Z = 0+D.

If x ∈ X ∪ {i} and z ∈ Z ∪ {j}, then eq. 7 holds by construction.
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If x /∈ X and z /∈ Z, then by construction we have that R′(x, y) = R(x, y) and
R′(y, z) = R(y, z). Thus

sup
y:R′(x,y)>R(x,y)

t(R′(x, y), R′(y, z)) =

= sup
y:R′(x,y)>R(x,y)

t(R(x, y), R(y, z))

≤ R(x, z)

= R′(x, z)

If x ∈ X ∪ {i} and z /∈ Z, then by construction we have that R′(y, z) =
R(y, z) and that supy:R′(x,y)>R(x,y)t(R(j, y), R(y, z)) = 0. If R′(x, y) = R(x, y)
eq. 7 obviously holds. If R′(x, y) > R(x, y), then from construction R′(x, y) =
t(R(x, i), R1(i, j), R(j, y)). Then

sup
y:R′(x,y)>R(x,y)

t(R′(x, y), R′(y, z)) =

= sup
y:R′(x,y)>R(x,y)

t(R(x, i), R1(i, j), R(j, y), R(y, z))

≤ sup
y:R′(x,y)>R(x,y)

t(R(j, y), R(y, z))

= 0

because z /∈ Z. Thus eq. 7 holds. Similarly if x /∈ X and z ∈ Z. If x = i
and z /∈ Z the proof follows closely the steps of the previous case. Similarly if
x /∈ X and z = j, which concludes all cases. Thus R′ is transitive.

2

4.3 Numerical example

In this subsection we provide a numerical example of the application of the
ITU algorithm, in order to best explain its operation. As input we assume
the transitive relation Rinput of table 2. The assumed t-norm for the sup−t
transitivity is the bounded difference. The element added to the relation is
(#9,#6,0.95). In the following we explain the effect that each one of the steps
of algorithm ITU has on the initial relation Rinput so that relation Routput is
acquired.

(1) Fuzzy set A is the #9 column.
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Table 2
Initial transitive relation Rinput

#1 #2 #3 #4 #7 #8 #9

#1 0.80 0.95 0.90 0.85 0.85 0.90 0.80

#2 0.85 0.80 0.95 0.90 0.90 0.95 0.85

#3 0.90 0.85 0.80 0.95 0.75 0.80 0.90

#4 0.95 0.90 0.85 0.80 0.80 0.85 0.95

#5 0.85 0.80 0.95 0.90 0.70 0.75 0.85

#6 0.95 0.90

#7 0.90 0.95

#8 0.95 0.90

Table 3
Output relation Routput of ITU after the addition of element (#9,#6,0.95)

#1 #2 #3 #4 #6 #7 #8 #9

#1 0.80 0.95 0.90 0.85 0.75 0.85 0.90 0.80

#2 0.85 0.80 0.95 0.90 0.80 0.90 0.95 0.85

#3 0.90 0.85 0.80 0.95 0.85 0.80 0.80 0.90

#4 0.95 0.90 0.85 0.80 0.90 0.85 0.85 0.95

#5 0.85 0.80 0.95 0.90 0.80 0.75 0.75 0.85

#6 0.95 0.90

#7 0.90 0.95

#8 0.95 0.90

#9 0.95 0.90 0.80

(2) Fuzzy set D is the #6 row.
(3) #6 column is created.
(4) #9 row is created.
(5) #3 → #7, #4 → #7 and #5 → #7 elements are updated.

4.4 Comparative study

In table 4 we present a summary of the computational complexities of the
transitive closure re-establishment approaches mentioned herein.

In the case of the average sparse relation, the proposed ITU algorithm out-
performs the conventional one, for both representation models. It is worth
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Table 4
Summary of computational complexities of transitive closure re-establishment algo-
rithms

Algorithm Data model Sparse relation Dense relation

Conventional Complete n3 n3

Conventional Sparse n2 log n n3

ITU Complete n2 n2

ITU Sparse log3 n n2 log n

mentioning, though, that only the combination of the proposed model and
algorithm reaches a sub-linear complexity, when the conventional approach
combined with a complete representation has a complexity of O(n3). In the
case of dense relations, the combination of the proposed model and ITU al-
gorithm reaches a complexity of O(n2 log n), when the conventional approach
combined with a complete representation has a complexity of O(n3).

Even in the case that the complete representation model is followed, the ITU
algorithm outperforms the conventional one, having a complexity of O(n2),
compared to a complexity of O(n3).

Finally, the proposed ITU algorithm is more efficient as far as the storage
requirements are concerned when compared to the conventional approach,
when using either representation model, due to the fact that it does not require
the storage of two copies of the relation.

5 Complete transitive closure of fuzzy binary relations

The ITU algorithm for incremental update of transitive fuzzy binary relations
presented in the previous section easily leads to the design of an algorithm for
a complete transitive closure of a relation as well. The proposed incremental
transitive closure (ITC) algorithm is described next, along with a theoretical
study on its computational complexity and comparison to the conventional
algorithm.

5.1 The incremental transitive closure (ITC) algorithm

Algorithm ITC:

Parameters: R
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Output: R′

(1) Create an empty binary relation R′.
(2) For each non zero element R(i, j) in the initial relation R

(a) Assign

R′(i, j) ← sup(R′(i, j), R(i, j))

(b) Run the incremental update algorithm with parameters R′ i j:

R′ ← ITU(R′, i, j)

When the algorithm terminates we have R′ = Trt(R).

Theorem 5: The computational complexity of proposed ITC algorithm is
O(n log4 n) in the average case and O(n4 log n) in the worst case, assuming
the proposed sparse representation model.

Proof: Step (1) is obviously completed in an O(1) operation. Step (2a) is
executed in an O(log n) operation, while the complexity of step (2b) is as
described in the previous section. Step (2) is executed as many times, as is
the count of elements in relation r.

In the average case, there are O(n) rows in r, each one containing O(log n)
elements, thus resulting in O(n log n) elements in r, and the complexity of step
2b is O(log3 n). Thus, the overall complexity is

O(1) + O(n log n) · (O(log n) + O(log3 n)) = O(n log4 n)

In the worst case, the count of elements in r is n2, and step 2b has a complexity
of O(n2 log n), thus resulting in

O(1) + O(n2) · (O(log n) + O(n2 log n)) = O(n4 log n)

2

5.2 Numerical example

In this subsection we provide a step-by-step demonstration of the operation
of the ITC algorithm. The relation upon which the algorithms is be applied is
presented in Fig. 4, where drawn links have a weight of 0.95, while all other
links have a weight of 0. It is worth noting that in the provided sample relation
loops exist (see #1 → #2 → #3 → #4 → #1 as well as #7 → #8 → #1).
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Fig. 4. The sample fuzzy relation

#2

#1 0.95

Fig. 5. Added element (#1,#2,0.95)

#2 #3

#1 0.95 0.90

#2 0.95

Fig. 6. Added element (#2,#3,0.95)

Moreover, the relation is not a reflexive one, which is a requirement for most
known transitive closure algorithms. Finally, the bounded difference t-norm is
chosen for the property of transitivity.

As explained in section 5, in order to construct the transitive closure of the
provided relation we start from an empty relation and gradually built the
closure by repeatedly applying the ITU algorithm. In the first step we add the
link between elements #1 and #2 (see Fig. 5); in the figures of this subsection,
on the left we present the links already presented to the ITC algorithm, while
on the right we present the resulting temporary relation; this is the relation
that will hold the transitive closure when the algorithm terminates.

In the next step the link between #2 and #3 is added (see Fig. 6), while ITU
also adds the link between #1 and #3. The reader is invited to follow the
application of ITC and ITU through figures 7, 8, 9, 10, 11, 12, 13, 14 and
15. Worthy of mentioning is the step when the link between element #4 and
element #1 is added, where we can see how the algorithm successfully handles
the generated loop.
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#2 #3 #8

#1 0.95 0.90 0.90

#2 0.95 0.95

Fig. 7. Added element (#2,#8,0.95)

#2 #3 #4 #8

#1 0.95 0.90 0.85 0.90

#2 0.95 0.90 0.95

#3 0.90

Fig. 8. Added element (#3,#4,0.95)

#1 #2 #3 #4 #8

#1 0.80 0.95 0.90 0.85 0.90

#2 0.85 0.80 0.95 0.90 0.95

#3 0.90 0.85 0.80 0.95 0.80

#4 0.95 0.90 0.85 0.80 0.85

Fig. 9. Added element (#4,#1,0.95)

#1 #2 #3 #4 #8 #9

#1 0.80 0.95 0.90 0.85 0.90 0.80

#2 0.85 0.80 0.95 0.90 0.95 0.85

#3 0.90 0.85 0.80 0.95 0.80 0.90

#4 0.95 0.90 0.85 0.80 0.85 0.95

Fig. 10. Added element (#4,#9,0.95)
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#1 #2 #3 #4 #8 #9

#1 0.80 0.95 0.90 0.85 0.90 0.80

#2 0.85 0.80 0.95 0.90 0.95 0.85

#3 0.90 0.85 0.80 0.95 0.80 0.90

#4 0.95 0.90 0.85 0.80 0.85 0.95

#5 0.85 0.80 0.95 0.90 0.75 0.85

Fig. 11. Added element (#5,#3,0.95)

#1 #2 #3 #4 #7 #8 #9

#1 0.80 0.95 0.90 0.85 0.90 0.80

#2 0.85 0.80 0.95 0.90 0.95 0.85

#3 0.90 0.85 0.80 0.95 0.80 0.90

#4 0.95 0.90 0.85 0.80 0.85 0.95

#5 0.85 0.80 0.95 0.90 0.75 0.85

#6 0.95

Fig. 12. Added element (#6,#7,0.95)

Table 5
Summary of computational complexities of complete transitive closure algorithms

Algorithm Data model Sparse relation Dense relation

Conventional Complete n3 log n n3 log n

Conventional Sparse n2 log2 n n3 log n

ITC Complete - -

ITC Sparse n log4 n n4 log n

5.3 Comparative study

Table 5 summarizes the computational complexities of the conventional ap-
proach to transitive closure and the proposed ITC algorithm. In the case where

24



#1 #2 #3 #4 #7 #8 #9

#1 0.80 0.95 0.90 0.85 0.90 0.80

#2 0.85 0.80 0.95 0.90 0.95 0.85

#3 0.90 0.85 0.80 0.95 0.80 0.90

#4 0.95 0.90 0.85 0.80 0.85 0.95

#5 0.85 0.80 0.95 0.90 0.75 0.85

#6 0.95 0.90

#7 0.95

Fig. 13. Added element (#7,#8,0.95)

#1 #2 #3 #4 #7 #8 #9

#1 0.80 0.95 0.90 0.85 0.85 0.90 0.80

#2 0.85 0.80 0.95 0.90 0.90 0.95 0.85

#3 0.90 0.85 0.80 0.95 0.75 0.80 0.90

#4 0.95 0.90 0.85 0.80 0.80 0.85 0.95

#5 0.85 0.80 0.95 0.90 0.70 0.75 0.85

#6 0.95 0.90

#7 0.90 0.95

#8 0.95 0.90

Fig. 14. Added element (#8,#7,0.95)

the binary relation in question is dense, the conventional approach is better,
having a complexity of O(n3 log n), compared to a complexity of O(n4 log n)
for the ITC algorithm.

In the average case, on the other hand, the ITC algorithm is greatly superior,
having a complexity of O(n log4 n); the difference between this and the com-
plexity of O(n3 log n) for the conventional approach, or even the complexity
of O(n2 log2 n) when exploiting the proposed sparse representation, is huge. It
is worth mentioning that the complexity of the proposed approach in the case
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#1 #2 #3 #4 #6 #7 #8 #9

#1 0.80 0.95 0.90 0.85 0.75 0.85 0.90 0.80

#2 0.85 0.80 0.95 0.90 0.80 0.90 0.95 0.85

#3 0.90 0.85 0.80 0.95 0.85 0.80 0.80 0.90

#4 0.95 0.90 0.85 0.80 0.90 0.85 0.85 0.95

#5 0.85 0.80 0.95 0.90 0.80 0.75 0.75 0.85

#6 0.95 0.90

#7 0.90 0.95

#8 0.95 0.90

#9 0.95 0.90 0.80

Fig. 15. Added element (#9,#6,0.95)

of the average sparse binary relation is below quadratic complexity.

Since the conventional approach is better in the worst case, while the proposed
ITC algorithm is considerably better in the average case, the value of the
proposed ITC algorithm greatly depends on the validity of the assumptions
made concerning the average case. In other words, in all cases where the
assumptions stated in subsection 2.1 hold, the proposed approach is by far
preferable. The main assumption stated in subsection 2.1 is that considerably
less non zero elements exist in the average case; O(n log n) instead of O(n2). In
many real life problems handled using fuzzy binary relations this assumption
holds; ontological knowledge representations used in inferencing engines and
information retrieval applications are such examples.

When it comes to storage requirements, the conventional approach requires
that two copies of the relation exist in the memory at the same time, thus
doubling the storage requirements of the algorithm. On the other hand, space
for a single relation is enough for the execution of the ITC algorithm; two
relations exist, but as elements are added in one, they are removed from the
other.

In addition to the reduced computational complexity and storage require-
ments, the proposed ITC approach to complete transitive closure of fuzzy
binary relations also has the following merits:

(1) In the conventional approach, a composition of the relation, and thus an
operation of complexity O(n2 log n) in the average case, has to be per-
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formed before the decision to terminate the algorithm is taken. This is
true even when the relation is initially transitive, thus requiring no ad-
justment. In the proposed approach, in the same situation the algorithm
would terminate in O(n log4 n) time.

(2) In the conventional approach, the relation is not transitive until the oper-
ation terminates. Thus, in the case of a very large number n, a very long
time has to be spent before the relation becomes usable by algorithms
that assume transitivity. On the contrary, relation R′ is transitive after
each step when utilizing the ITC algorithm, and thus algorithms that as-
sume it to be transitive can be applied to it before the closure operation
is completed.

(3) The termination point of the conventional approach greatly depends on
the “depth” of the relation, i.e. on the count of vertices of the longest
path. Specifically, it may take the process anywhere between 1 and log n
iterations to terminate. On the contrary, the ITC algorithm assures tran-
sitivity in one pass and thus the count of required steps is known be-
forehand. Therefore, an indication of progress of the process is available
on-line, if we require it, in the form of percentage completed.

(4) The proposed approach is not affected by cycles in the relation, i.e. it
does not require that the relation is ordering. This is is not a property
shared by all specialized transitive closure algorithms [37].

(5) The computational complexity for the complete transitive closure in the
sparse case is very close to the computational complexity of loading the
relation from a storage location such as a hard disk; O(n log4 n) compared
to O(n log n). Consequently, we have the option to store the relation in a
non transitive form, thus saving in disk space, and calculate the transitive
closure at the time of loading using the ITC algorithm, only slightly
affecting the overall complexity and execution time.

6 Experimental results

In this section we provide experimental results from the application of the
conventional methodologies and ITU and ITC algorithms for transitivity re-
establishment and complete transitive closure on a synthetic data set, as well
as on a real life data set from the field of knowledge based information retrieval
[5][39]. Implementation of the proposed relation representation model, as well
as of the conventional and proposed algorithms, has been done using the Java
environment and execution has been performed on a PC (Centrino 1.6GHz,
256MB RAM) with Windows XP operating system. The source code of these
experiments, modified as to provide detailed step by step output, is freely
available at [48].
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6.1 Data sets

In knowledge based information retrieval, the retrieval system needs to utilize
all or a part of the available knowledge when processing e.g. a user query,
a user profile or a document, in order to provide a meaningful response. In
cases where a fuzzy relational knowledge representation model is followed,
having the fuzzy relations readily available in a closed transitive form typically
alleviates the need for recursion in the processing algorithms, thus greatly
reducing computational complexity and processing time.

In this paper we utilize such a relation in order to experimentally validate our
theory. Specifically, the universe of discourse S90,000 is the set of all concepts
defined in WordNet for the English language verbs and nouns [22]; there is
a 1-1 mapping between elements of this set and the verb and noun synsets
defined in WordNet. The cardinality of this set is slightly over 90,000 elements.

A fuzzy binary relation on S90,000 is generated automatically, again using
WordNet as a source. Two of the lexical relations, hyponym and part meronym,
are used to specify the pairs of connected elements in the relation. As these
relations are crisp in WordNet, degree 0.9 is assigned to all such pairs by
default. Additionally, the relation is made reflexive. Overall, around 110,000
pairs are connected to a degree 0.9 and 90,000 more elements to degree 1 due
to reflexivity. This forms fuzzy binary relation R90,000.

By randomly selecting elements from set S90,000 we form crisp set S50,000.
This set contains 50,000 elements. Keeping only the rows and columns of
R90,000 that correspond to elements in S50,000 we construct relation R50,000.
This is similar in structure and content with fuzzy binary relation R90,000,
but smaller in size; the comparative study of algorithms’ performance on such
relations provides for more intuitive evaluation of their complexities. Recur-
sively, S20,000 is constructed from S50,000, S10,000 is constructed from S20,000 and
so on, thus resulting in a wide range of corresponding binary relations: Rn,
n ∈ {90000, 50000, 20000, 10000, 5000, 3000, 2000, 1000, 500}.

Fuzzy binary relation Rt
90000, obtained using algorithm ITC, is the sup-t tran-

sitive closure of R90,000, where t is the bounded sum t-norm. Rt
90000 contains

760,000 non zero elements; 90,000 elements having degree 1 due to reflexiv-
ity, 110,000 elements with degree 0.9 also existing in the original R90,000 and
560,000 elements with lesser degrees, produced during transitive closure. Sim-
ilarly, we have constructed transitive relations Rt

n, all following the rule:

Rt
n = Trt(Rn) (8)

The utilization of the complete representation model for R90,000 or other re-
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A B

Fig. 16. Execution times for 2 compositions and for ITU on Rd
n using complete

representation.

lations having a universe of discourse of considerable dimension is not practi-
cally possible. For the case of R90,000, for example, the relation dimension of
90, 000× 90, 000 requires the representation of approximately 8 billion double
precision numbers. With 8 bytes allocated for each such number, the required
memory space just for one copy of the relation is 65Gb of RAM. Thus, in
all subsequent experiments only the proposed sparse representation model is
considered for this series of data sets.

In order to experimentally verify the efficiency of the proposed methodologies
when dealing with dense relations, or when combined with the complete rep-
resentation model, we have synthetically constructed a suitable series of data
sets. Specifically, we have generated n × n relations for various values of n,
with random degrees of relation between any pair of elements, and performed a
transitive closure operation on them. The sizes n of relations constructed are
n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 500, 1000, 2000}; the names
of the corresponding relations are Rd

n.

6.2 Re-establishment of transitivity using the complete representation model

As shown in section 4, ITU algorithm has a complexity of O(n2), compared to
a complexity of O(n3) of the conventional approach, assuming the complete
representation model. In order to experimentally verify this, we have applied
both to the Rd

n data set. In the cases where size n was too small to lead to a
reliable measurement of time, the operations were executed 10, 100, 1,000 or
1,000,000 times, and the total time was divided by the count of repetitions.
Table 6 summarizes the experimental times.

It is easy to see that algorithm ITU requires considerably less time in order
to perform the same operation when compared to the conventional method-
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Table 6
Execution times for 2 compositions and for ITU on Rd

n using complete representation

Size n conventional algorithm ITU algorithm

(2 compositions)

10 0.000231s 0.00002s

20 0.001272s 0.00005s

30 0.004196s 0.00013s

40 0.009724s 0.000231s

50 0.018867s 0.00036s

60 0.032887s 0.000531s

70 0.052175s 0.000711s

80 0.077862s 0.000931s

90 0.11046s 0.001201s

100 0.15402s 0.001493s

200 1.20353s 0.00588s

300 4.496s 0.0136s

500 21.29s 0.039297s

1000 164.616s 0.1512s

2000 1353.796s 0.6039s

ology, for all sizes of relations. For example, when the size of the relation is
2000 × 2000 the conventional methodology takes more that 2,200 times as
long as the proposed ITU algorithm in order to re-establish transitivity. More
importantly, as can be seen more intuitively in figure 16, where the elevation
of the graph for ITU is smaller that that for the conventional approach when
plotted on a logarithmic scale, algorithm ITU is much more efficient in scaling
with respect to size, as was also expected from the theoretically computed
enhanced complexity; In figure 16.A the time axis is linear, while in figure
16.B it is logarithmic.

6.3 Re-establishment of transitivity for sparse relations using the sparse rep-
resentation model

In section 4 we have shown that ITU algorithm has a sub-linear complex-
ity, compared to a complexity of O(n2 log n) of the conventional approach,
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Table 7
Execution times for 2 compositions and for ITU on Rn using sparse representation.

Size n conventional algorithm ITU algorithm

(2 compositions) (1,000,000 repetitions)

500 201.564s 7.64s

1000 1543.842s 8.95s

2000 13436s 9.74s

3000 10.29s

5000 10.45s

10000 10.95s

20000 12.40s

50000 13.53s

90000 17.80s

A B

C D

Fig. 17. Execution times for 2 compositions and for ITU on Rn using sparse repre-
sentation.

assuming sparse relations and the proposed sparse representation model. In
order to experimentally verify this, we have applied both to the Rn data set.
Table 7 summarizes the results. In some cases execution time was too long
and the experiment could not completed because of that. Therefore some val-
ues are missing from the table. For a more intuitive presentation, the values
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A B

Fig. 18. Execution times for 2 compositions and for ITU on Rd
n using sparse repre-

sentation.

are graphed in figure 17. Note that both in the table and in the graphs, the
times reported for algorithm ITU correspond to 1,000,000 repetitions, while
the times reported for the conventional approach correspond to a single ap-
plication.

In figure 17.A we can observe that the calculated complexity of O(n2 log n) is
experimentally verified. Similarly, figure 17.B verifies the sub-linear complexity
for algorithm ITU. Figures 17.C and 17.D contain measurements from both
experiments to allow for a comparative study. We can easily see the superiority
of the algorithm ITU both in execution time and in scaling with respect to
the size of the relation.

6.4 Re-establishment of transitivity for dense relations using the sparse rep-
resentation model

In section 4 we have shown that ITU algorithm has a complexity of n2 log n,
compared to a complexity of O(n3) of the conventional approach, assuming
dense relations and the proposed sparse representation model. In order to
experimentally verify this, we have applied both to the Rd

n data set, which
was loaded on the AVL trees of the proposed sparse representation model.
Table 8 summarizes the results, and figure 18 presents the data in a more
intuitive format. Note that both in the table and in the graphs, the times
reported for algorithm ITU correspond to 100 repetitions, while the times
reported for the conventional approach correspond to a single application.

Once more the superiority of the ITU algorithm in scaling that was proven
theoretically is verified by the experimental results.
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Table 8
Execution times for 2 compositions and for ITU on Rd

n using sparse representation.

Size n conventional algorithm ITU algorithm

(2 compositions) (100 repetitions)

10 0.05s 0.07s

20 1.462s 0.211s

30 2.854s 0.481s

40 5.067s 0.911s

50 8.292s 1.522s

60 12.948s 2.283s

70 24.425s 3.205s

80 33.998s 4.286s

90 40.438s 5.618s

100 64.663s 7.181s

200 516.473s 55.83s

Fig. 19. Execution times for application of ITC on Rn and Rt
n.

6.5 Complete transitive closure for sparse relations using the sparse repre-
sentation model

In section 5 we have proven that algorithm ITC has a complexity of n log4 n,
compared to a complexity of n2 log2 n of the conventional approach, when
considering sparse relations and the proposed sparse representation model. In
order to verify the efficiency of algorithm ITC we have applied it to data sets
Rn and Rt

n. Results are presented in table 9 and summarized in figure 19.

We can see that the algorithm scales almost linearly for both data sets. More-
over, the augmented density of the transitive relation has an effect on the
overall execution time. Still, as can be seen in the figure, this is an effect only
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Table 9
Execution times for application of ITC on Rn and Rt

n data sets.

size n Rn data set Rt
n data set

500 0.03s 0.03s

1000 0.05s 0.04s

2000 0.07s 0.06s

3000 0.101s 0.1s

5000 0.17s 0.16s

10000 0.591s 0.761s

20000 5.518s 15.832s

50000 16.473s 52.745s

90000 32.106s 101.396s

on the elevation of the graph, not on its form; in other words, the complexity
remains close to linear and certainly below the quadratic when dealing with
sparse relations that are already transitive, and thus contain more non zero
elements.

Still, what is most important is to compare the efficiency of the ITC algo-
rithm with that of the conventional transitive closure approach. As was made
obvious from the missing elements in table 7 and the form of figure 17, the
execution time even of a single composition is prohibitive for the application
of the conventional approach on the Rn or Rt

n data sets. Therefore, we have
performed estimations of the time it would take to apply the algorithm on
data set Rn, as follows:

We have edited the self-composition module, as to indicate the progress made
and the time elapsed after each row of the output relation has been computed.
The output of the first steps of the execution of the self-composition algorithm
on data set R90000 is reported in Table 10.

Figure 20.A graphically presents the computed times. There, we can see that
the algorithm tends to slow down as the process progresses and the output
relation is gradually augmented. Plotting the same points on a logarithmic
scale, as in figure 20.B, we acquire much simpler curves, based on which we
can estimate probable execution times for 100% of the self-composition in
a more intuitive manner. This way, we have produced the estimations that
are graphically presented in figure 20.C. In that figure, the first three points
are the real measured execution times and the rest have been estimated; the
first ones with a larger portion of the process already completed, and thus
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Table 10
Execution times for self-composition algorithm on data set R90000.

row time for this step total time

1 7.262s 7.262s

2 7.461s 14.723s

3 7.661s 22.384

4 7.871s 30.255s

5 8.202s 38.457s

6 8.182s 46.639s

7 8.301s 54.94s

8 9.134s 64.074s

A B

C

Fig. 20. Execution time for a single self composition on Rn

with greater confidence, the last ones with a smaller portion of the process
completed and thus with lower confidence. In order to compensate for the lack
of information for the execution times for larger relations, the estimations for
large sizes n are more conservative. An observation that can be made in the
figure is that the complexity of the self-composition algorithm is certainly far
from linear.

Of course, even assuming that the estimated execution times for a single com-
position are correct, we still cannot estimate the overall execution time for the
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A B

Fig. 21. Execution times for application of ITC on Rn and Rt
n.

transitive closure following the conventional approach, as it depends on the
“depth” of the relations. For relation R90000, for example, in theory the conven-
tional approach might require anywhere between 2 and 17 self-compositions.
In order to be able to make some sort of comparison we follow the best case sce-
nario for the conventional approach, thus assuming that 2 self-compositions
are adequate to guarantee transitivity. Comparative presentation of results,
under these assumptions, are presented in figure 21. In the figure we can eas-
ily see, as was expected, that there is a great difference between both the
execution time for the specific sizes and in the way that the algorithms scale,
between the traditional approach and the proposed ITC algorithm.

7 Conclusions

In this paper we have dealt with the transitive closure of sparse fuzzy binary
relations. We have started by formalizing the notion of sparseness and by
proposing a compact representation model that allows for O(log n) access to
a specific element, row or column in the relation, as well as O(log n) inser-
tion time. Continuing, we have presented ITU, an algorithm for incremental
update of transitive binary relations. This algorithm has important practical
implications in fields were transitive relations are constructed using a trial
and error approach. Extending this, we have described ITC, an algorithm
for transitive closure of binary relations that relies on the above incremental
methodology. The practical implications of this algorithm are found in fields
were large and sparse transitive relational representations are meaningful. As
most representative examples we can mention knowledge based systems, on-
tological representations and intelligent information and multimedia retrieval.
Other fields and applications that require the transitive closure of binary rela-
tions, fuzzy or not, may benefit from the findings of this work, provided that
the relations they need to handle are compliant with the given assumptions
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on sparseness.

As further work, we have the intention to derive theoretical estimations of the
computational complexities of algorithms ITU and ITC when assumptions
on sparseness are variable, e.g. kr(n) non zero rows, kc(n) non zero columns,
ri(n) non zero elements in row i, etc. Extending this work, we hope to reach
a theoretical criterion determining which approach to complete transitive clo-
sure, the conventional one or ITC, is best for a given relation, assuming that
some statistical knowledge on the structure of the relation is available. Fi-
nally, we intend to further investigate the practical implications of this work
in diverse fields, such as the fields of context determination in ontologies, intel-
ligent information retrieval, or even dynamic routing algorithms for computer
networks.
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