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ABSTRACT image processing with natural language understandingttoreati-
) ] ] ) cally index video for intelligent search and retrieval.
Detection of perceptually important video events is foratedi Gaining insight from viewer behavior, user attention medel

here on the basis of saliency models for the audio, visuatextdal were deve|0ped for detecting salient video partsl Motianef cam-
information conveyed in a video stream. Audio saliency is as erg and audio attention models were cues to capture saifentria-
sessed by cues that quantify multifrequency waveform nagiuls,  tjon and identify the segments to compose a summary [2]. I ou
extracted through nonlinear operators and energy trackiM  previous work, saliency was modeled independently in eantfatn
sual saliency is measured through a spatiotemporal aitentodel  jty, using meaningful temporal modulations in multipledfuencies
driven by intensity, color and motion. Text saliency is exted from  for the audio and spatiotemporal features (color, motinterisity)
part-of-speech tagging on the subtitles information a#é with  for the visual stream [4, 5]. An integrated audiovisualesaty curve
most movie distributions. The various modality curves ategrated formed the basis of a bottom-up, content-independent, sanma:

in a single attention curve, where the presence of an eveptb®a tjon technique.

signified in one or multiple domains. This multimodal satign In this work, we extend the audiovisual saliency-based wide
curve is the basis of a bottom-up video summarization algori  symmarization algorithm in [5] to include text saliency @ugti-
that refines results from unimodal or audiovisual-basethsking.  cally extracted from the subtitles information availabléhneach
The algorithm performs favorably for video summarizationérms  movie distribution. For the computation of the frame-basext

of informativeness and enjoyability. saliency metric the steps followed are: (i) extract the radvan-
Index Terms— multimodal saliency, audio, video, text process- SCTiPt from the subtitle file and perform shallow syntactimlysis
ing, video abstraction, movie summarization including part-of-speech tagging, (i) segment the autieasn us-
ing speech recognition technology to find the beginning arding

1. INTRODUCTION frame for each word in the transcript, and (iii) assign a sattency

value to each frame based on the parser tag assigned to tige cor

Video streams involve multiple information modalities ticanvey ~ sponding word. The audio, visual and text saliency scorediar
cues related to the nature and properties of the underlyiegte. ~ €arly combined to derive a multimodal saliency score fohdeame.
For exampleyisual events may include objects, motions and sceneSimilarly to audio and visual saliency, the text-basedesely metric
changesaural events can be changes in audio sources, while diauses only local information. As a result the movie summéora
logues, subjects and key-words may be deeteetdal events. Per-  algorithm is easily scalable to different video contentgiag from
ceptual attention is triggered by changes in the involveshes/like ~ short movie clips to whole movies.

scene transitions, progresgions or newly intrpduced tber@am- 2. AUDIO ANALYSIS

putational models of attention have been previously d@eslaising

multimodal analysis, i.e., the concurrent analysis of iplétinfor-  The analysis and saliency-modeling of the audio streamsedan
mation modalities [1, 2, 3, 4, 5]. Automatic video contentess,  strong modulation structures of the signal waveform, usiregAM-
analysis and abstraction have thus emerged as potentlad&ms.  FM model for audio signals (speech, music, environmentahds),
Video summaries provide the user with a short version of the.e,, s(t) = 25:1 ax(t) cos (¢r(t)). The instantaneous amplitude
video that ideally contains all important information forderstand- ¢, (¢) and frequencyy. (t) = d¢y(t)/dt can be estimated from a set
ing the content, serving as a preview, an overview or a quejgcd  of Gabor filtersh, (t) by applying the nonlinear energy operatbr
[6]. Earlier works on video skimming were primarily based@n-  and the energy separation algorithm. A compact, low-difosas
cessing the visual input and low-level features like colommtion  representation emerges by tracking the energy-dominadtifation
[7]. Other skimming schemes like hierarchical frame cliste[8]  component along multiple frequency bands [13], i.e., themonent

or fuzzy classification [9] have also produced encouragesyliis.  ; — jlm] € {1,2,..., K} maximizing the average energy

In an attempt to incorporate multimodal and/or perceptaatudres

various systems have been designed and implemented. Tdre Inf MTE[m] = max 1 Z a((s * hi)[n)). 1)
media project [10, 11] and its offsprings [12] combined speand 1<k<K N —

This work was supported in part by the Greek research pragramAudio is described by means of this energy, along with theesor
TIENEA-2003-EA 865, 866, 554 [cofinanced by E.U.-European Social Fundsponding mean amplitude and frequency
(75%) and the Greek Ministry of Development-GSR¥5()] and by the Eu-
ropean Union FP6-IST Network of Excellence ‘MUSCLE'. MIA[m] = (JA;[n]]) , MIF[m] = (Q;[n]), (2)



wherem the analysis frame index a¥ samples duration, is the
sample index inm, hj the impulse response of thigh filter and
s[n] = s(nT), Ax[n] = ax(nT) andQx[n] = Twi(nT) are the
discrete-time signals. More details and algorithmic impdatations
can be sought in [13, 4].

This 3D feature vectoF,[m] = [MTE, MIA, MIF] [m] con-
veys information on audio properties such as level of eloitarate-
of-change, frequency content and source energy, relatiw fores-
ence and progression of audio events. Audio saliency isetbfiy
a weighted linear integration of the normalized features

Sa[m] = wiMTE[m] + woMIA[m] + wsMIF[m],  (3)
derived here with equal weights;, = 1/3, 7 = {1, 2, 3} and feature
normalization by least squares fit of their individual valte|0, 1].

3. VISUAL ANALYSIS

Computation of visual saliency is based on the notion of draén
ized saliency map [1] initiated by a feature competitionesol. The
video volume is initially decomposed into a set of featurluxees,

namely intensity, color and spatiotemporal orientatidfsr the in-

tensity and color features, we adopt the opponent procdsstbe-

ory while spatiotemporal orientations are computed ustegrable
filters and measuring their strength along particular dioes. The
different orientations are then fused to produce a singkntation

volume. More details can be found in [3]. Volumes for eachifes

are decomposed into multiple scales. The pyramidal decsitiqo

allows the model to represent smaller and larger eventsparaee
subdivisions of the channels.

same volume and allows a voxel to increase its saliency \ahlhe

if the activity of its surroundings is low enough. By itekegienergy
minimization, asaliency volume S is created by averaging the con-
spicuity feature volumeﬁ},c at the first pyramid level, i.eS(q) =

% ) Zzzl Fvlk (q)

Visual saliency values for each frame are obtained by first no
malizing the feature volumes [f, 1] and then pointwise multiplying
them by the saliency volumg(q) in order to suppress low saliency
voxels. The weighted average is taken to produce a value gaef

3
Se =Y wiy_ S(g)- Fe,(q),

k=1 q

@)

where the inner sum is taken over all the voxels of a voluméet t
first pyramid level.

4. TEXT ANALYSIS AND PROCESSING

Subtitles include transcripts of the audio track of videxsell as,
time stamps roughly corresponding to the location of thadrapt
in the audio stream. They are available in all commercialgased
video material like movies and TV series. Subtitles are joied in
standardized format consisting of movie transcripts fedd by time
stamps, thus making their processing simple.

4.1. Syntactic Text Tagging

The first step of transcript processing consists of shallgmiastic
tagging that includes part-of-speech (POS) tagging. Ferghr-
pose, we use a decision-tree-based probabilistic passpeéch tag-

A spatiotemporal saliency volume is computed with the incor ger described in [14]. After each word is classified into tbere-

poration of feature competition by defining cliques at threldevel
and using an optimization procedure with both inter- anthinfiea-
ture constraints. This is implemented through an energgdanea-
sure that involves voxel operations between coarse anddoaes
of the pyramid: if the center is a voxel at leveke {2,...,p — d},
wherep is the maximum pyramid level andlis the desired depth
of the center-surround scheme, then the surround is thespnd-
ing voxel at levelh = ¢ + § with § € {1,2,...,d}. Hence, if we
consider the intensity and two opponent color features emants
of the vectorF, = [Fy,, Fy,, F\,,] with F corresponding to the

sponding part-of-speech, text saliency weights are asdigmeach
word based on the POS tag assigned to that word. As far as §eman
information is concerned, some POS are more important ttrears
For example, the most salient POS tags are proper nounayvémdl
by nouns, noun phrases and adjectives [15]. Verbs can gpeif
mantic restrictions on their pre-arguments and post-aeguswhich
usually belong to the aforementioned classes. Finallyetiea list
of words that have very little semantic content; such wordoéten
referred to as “stop-words” and are filtered out in naturagleage
processing and web applications. Next, we assign a saliemay

original volume of each, levélof the pyramid is obtained by convo- sure to groups of POS tags based on the framework outlinagabo

lution with an isotropic 3D Gaussiaf# and dyadic down-sampling
F{ = (GxF") |2, €= 1,2,..,p, where|, denotes deci-
mation by 2 in each dimension. For each voxef volume F' the
energy is defined as

Ey(Fo (9) = M- Er(Fy, (9) + A2 - B2 (Fy (9),  (4)

POS taggers contain anywhere from 30 to 100 different tags. W
have created six POS classes in order to simplify the teidrsai
computation. The first (and most salient) class containgtbper
nouns, e.g., names of movie heroes, cities. The secondieentan-
mon nouns, the third contains noun phrases, the fourthtagdiecthe
fifth verbs and the sixth class the remaining parts of speegh,pro-
nouns, prepositions, conjunctions, adverbs. The follgwireights

whereAy, A2 are the importance weighting factors. The first term, gre assignédto each of the six classes: 1.0, 0.7, 0.5, 0.5, 0.5, 0.2.

which may be regarded as tHata-termis defined as

Ev(FS, () = Fy, (q) - |Fs, (q) — FV: (q)] (5)

and acts as a center-surround operator that promotes apgadift
fer from their spatiotemporal surroundings, thus attragtttention.
The secondsmoothness, term is defined as

ST (F(r)+ V), (6)

rEN(q)

Ex(Fy, (q) = FJ, (q) - Nl

Note that scores are normalized between 0.2 and 1, i.e.,"st@m
words” are assigned a small weight. Allin all, each word sgsed

a saliency score based on the POS category assigned to ieby th
tagger.

Next we show the output of the POS tagger and the assigned
weights for two sentences from the movie “Lord of the Rings I”
Note how proper nouns (PN), e.g. names, are very salienti@nd a
assigned a score of 1, noun phrases (NP) and verbs (VBZ, VVG) a
score of 0.5, while “stop-words” (IN) are assigned a scor@.af

10ne could actually train these saliency scores based onlabsetéd

whereV is the spatiotemporal orientation volume that indicates Mo gzjiency scores assigned to movie dialogues by users. Heteawe cho-

tion activity in the scene anl¥ (q) is the 26- neighborhood of voxel sen a somewhat arbitrary assignment of POS tag classesencyascores
g. This involves competition among voxel neighborhoods @& th based on observations of linguistic experts in [15].



Taken | by | Isildur | from | the | hand | of | Sauron
NP | NP PN IN [ NP| NP | IN PN
0.5 | 0.5 1.0 02 [05] 0.5 | 0.2 1.0

Evil is | gtirring | in | Mordor

NP | VBZ | VVG IN PN

0.5 0.5 0.5 0.2 1.0

4.2. Audio Segmentation using Forced Alignment

Although it is generally accepted that the movie subtitles/joled

by the production company are well synchronized with theiaud

stream, it is obvious that sometimes there is a delay in the that
subtitle appears. To correct such bias, we perform forcgohsata-
tion of the audio stream using the speech transcript andgshased
acoustic models, i.e., an automatic speech recognitiorRjAsys-
tem. The original timestamps in the subtitles are used to tfied
approximate location of the text in the audio stream, iceinitialize
the forced segmentation procedure. We avoid losing retesfzaech
segments in the audio stream by adding a small fixed amouimbef t
before the start time and after the end time of the subtitiestamps.

Forced segmentation is achieved using the SONIC ASR toolki

[16]. The acoustic models used were content-dependephdrmie

is based on the phonetic transcription of the corresportdixtgn the
subtitles with garbage models in the beginning and end df ean-
tence. Informal evaluation of the forced segmentationiteshowed
good performance on approximately 85% of the sentencegzethl
Errors occurred for part of the audio stream where speeatapped
with loud music or noises.

hidden Markov models trained on clean speech. The gramnear us O.SM 1
0

4.3. Text Saliency Curve

Based on the assignment of frames to words from the forced se

mentation procedure and the word saliency scores assignéueb
POS tagger a frame-based text saliency curve is computed as

Se[m] = wpxp[m],
pe{l,...,6}, w, €{0.2,05,0.7,1}, xp[m] € {0,1}. (8)

5. MULTIMODAL SALIENCY: AUDIO, VISUAL, TEXT

In a video stream with aural, visual and text informationilaze,
attention is modeled by constructing a composite, tempodex
of saliency. In this final step the various cues are combimed i
multimodal saliency curve (AVT) by low-level fusiof.t[m] =

fusion(Sa, Sv, St,m). A linear or nonlinear fusion scheme can be

employed. In this paper, a weighted linear combination efadio,
visual and text saliency is used

Savt = waSa + wvsv + wt5t7 (9)
where the three curves are weighted equally.This coupledecu
serves as a continuous-valued indicator function of sbéeents, in
one or more of the aural, visual or textual domains.

6. VIDEO SUMMARIZATION

The segment selection and skim rendering algorithm [5]etham
the multimodal saliency curve follows the steps:
1. AVT is filtered with a median filter of length)M + 1 frames.
2. A saliency threshold. is selected so that the requirper-
cent of summarization ¢ is achieved. Framesa with AVT value

Savt(n) > S. are selected. For example, for 20% summarization,

Saliency: audio (solid), visual (dashed) and text (dotted)
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Fig. 1. Saliency curves, annotation and keyframe selection. Huma
annotation performed by inspection (middle) and automafi¢che
summarization algorithm (bottom). Keyframes displayeel moted
gy circles on the AVT curve (“300” movie).

3200 3300 3400

set of selected frame® = {n : Sav(n) > S} is 20% of the total
number of frames The result is a video frame indicator functidn
for the desired level of summarizatien

3. The selected frames are joined into segments. Seleaged se
ments that are shorter thav frames are deleted from the summary.
This is almost equivalent with the morphological closingta indi-
cator functionl. with a vector oft’s of length NV + 1.

4. Neighboring segments that are selected for the summary ar
joined together if they are less tha@h frames apart. This is equiva-
lent to the morphological opening of the indicator functiesulting
from the previous step with a vector 0§ of length K + 1.

5. Selected segments are rendered into a summary usingesimpl
overlap-add to tailor together neighboring segments. ringerlap-
add is applied orl video frames and the corresponding audio sam-
ples. Video and audio processing is synchronous in all steps

The evaluated version of the algorithm operates With= N =
20 frames,K = L = 10 frames for videos at 25 frames per second.

7. EVALUATION & DISCUSSION

The developed multimodal saliency-based method was apfiie
video summarization on three segments (ca. 5-7 min) from the
movies “Lord of the Rings I’ (LOTR1), “300” and “Cold Mountali
(CM) [5]. In Fig. 1, we give an example of the saliency curvad a
their fusion, comparisons of manual vs. automatic saliemuyota-
tion and video abstraction (keyframes and salient segm&nt800

2The threshold is selected globally for short video clipst IBager clips

¢ = 0.2, the thresholdS. is selected so that the cardinality of the a segment-based threshold might perform better for videorsing.



95

AVT scores and relative improvement to AV

% A Video X2 X3 X5

85 1300 [AVT] =

80, 1300 [AV] Informativeness

75 EcMiAvT LOTR1 | 86.2 (+15.9%) 76.3 (+28.7%) 60.7 (+30.0%)

- — 300 | 86.8 (+9.8%) 77.9 (+16.1%) 61.4 (+18.4%)

oS CM | 784 (+14.9%) 67.1 (+12.3%) 59.3 (+17.3%)

:z Enjoyability

e LOTR1 | 89.0 (+15.5%) 80.8 (+20.7%) 71.1 (+21.5%)

so ML i o L . L 300 | 92.4 (+12.7%) 86.0 (+16.3%) 68.6 (+9.5%)
Informativeness Enjoyability CM | 845 (+9.6%) 76.8 (+08.4%) 71.8 (+9.9%)

Fig. 2. Subjective evaluation scores of video skims in differext¢s
(x2,3,5), using audiovisual (AV) and multimodal (AVT) saliency.

Table 1. Subjective evaluation scores (%) on 0-100 scale.

found atht t p: // cvsp. cs. ntua. gr/ research.

frames of a scene. Note the agreement of strong peaks in the au
and visual curves, a result of intentionally added sound\asaial
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