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ABSTRACT

Detection of perceptually important video events is formulated
here on the basis of saliency models for the audio, visual andtextual
information conveyed in a video stream. Audio saliency is as-
sessed by cues that quantify multifrequency waveform modulations,
extracted through nonlinear operators and energy tracking. Vi-
sual saliency is measured through a spatiotemporal attention model
driven by intensity, color and motion. Text saliency is extracted from
part-of-speech tagging on the subtitles information available with
most movie distributions. The various modality curves are integrated
in a single attention curve, where the presence of an event may be
signified in one or multiple domains. This multimodal saliency
curve is the basis of a bottom-up video summarization algorithm,
that refines results from unimodal or audiovisual-based skimming.
The algorithm performs favorably for video summarization in terms
of informativeness and enjoyability.

Index Terms— multimodal saliency, audio, video, text process-
ing, video abstraction, movie summarization

1. INTRODUCTION

Video streams involve multiple information modalities that convey
cues related to the nature and properties of the underlying events.
For example,visual events may include objects, motions and scene
changes,aural events can be changes in audio sources, while dia-
logues, subjects and key-words may be deemedtextual events. Per-
ceptual attention is triggered by changes in the involved events like
scene transitions, progressions or newly introduced themes. Com-
putational models of attention have been previously developed using
multimodal analysis, i.e., the concurrent analysis of multiple infor-
mation modalities [1, 2, 3, 4, 5]. Automatic video content access,
analysis and abstraction have thus emerged as potential applications.

Video summaries provide the user with a short version of the
video that ideally contains all important information for understand-
ing the content, serving as a preview, an overview or a query object
[6]. Earlier works on video skimming were primarily based onpro-
cessing the visual input and low-level features like color or motion
[7]. Other skimming schemes like hierarchical frame clustering [8]
or fuzzy classification [9] have also produced encouraging results.
In an attempt to incorporate multimodal and/or perceptual features
various systems have been designed and implemented. The Infor-
media project [10, 11] and its offsprings [12] combined speech and
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image processing with natural language understanding to automati-
cally index video for intelligent search and retrieval.

Gaining insight from viewer behavior, user attention models
were developed for detecting salient video parts. Motion, face, cam-
era and audio attention models were cues to capture salient informa-
tion and identify the segments to compose a summary [2]. In our
previous work, saliency was modeled independently in each modal-
ity, using meaningful temporal modulations in multiple frequencies
for the audio and spatiotemporal features (color, motion, intensity)
for the visual stream [4, 5]. An integrated audiovisual saliency curve
formed the basis of a bottom-up, content-independent, summariza-
tion technique.

In this work, we extend the audiovisual saliency-based video
summarization algorithm in [5] to include text saliency automati-
cally extracted from the subtitles information available with each
movie distribution. For the computation of the frame-basedtext
saliency metric the steps followed are: (i) extract the movie tran-
script from the subtitle file and perform shallow syntactic analysis
including part-of-speech tagging, (ii) segment the audio stream us-
ing speech recognition technology to find the beginning and ending
frame for each word in the transcript, and (iii) assign a textsaliency
value to each frame based on the parser tag assigned to the corre-
sponding word. The audio, visual and text saliency scores are lin-
early combined to derive a multimodal saliency score for each frame.
Similarly to audio and visual saliency, the text-based saliency metric
uses only local information. As a result the movie summarization
algorithm is easily scalable to different video content ranging from
short movie clips to whole movies.

2. AUDIO ANALYSIS

The analysis and saliency-modeling of the audio stream is based on
strong modulation structures of the signal waveform, usingthe AM-
FM model for audio signals (speech, music, environmental sounds),
i.e., s(t) =

∑K

k=1 ak(t) cos (φk(t)). The instantaneous amplitude
ak(t) and frequencyωk(t) = dφk(t)/dt can be estimated from a set
of Gabor filtershk(t) by applying the nonlinear energy operatorΨ
and the energy separation algorithm. A compact, low-dimensional
representation emerges by tracking the energy-dominant modulation
component along multiple frequency bands [13], i.e., the component
j = j[m] ∈ {1, 2, . . . , K} maximizing the average energy

MTE[m] = max
1≤k≤K

1

N

∑

n

Ψd((s ∗ hk)[n]). (1)

Audio is described by means of this energy, along with the corre-
sponding mean amplitude and frequency

MIA[m] = (|Aj [n]|) , MIF[m] = (Ωj [n]), (2)



wherem the analysis frame index ofN samples duration,n is the
sample index inm, hk the impulse response of thekth filter and
s[n] = s(nT ), Ak[n] = ak(nT ) andΩk[n] = Tωk(nT ) are the
discrete-time signals. More details and algorithmic implementations
can be sought in [13, 4].

This 3D feature vector~Fa[m] = [MTE, MIA, MIF] [m] con-
veys information on audio properties such as level of excitation, rate-
of-change, frequency content and source energy, related tothe pres-
ence and progression of audio events. Audio saliency is defined by
a weighted linear integration of the normalized features

Sa[m] = w1MTE[m] + w2MIA[m] + w3MIF[m], (3)

derived here with equal weightswi = 1/3, i = {1, 2, 3} and feature
normalization by least squares fit of their individual values to[0, 1].

3. VISUAL ANALYSIS

Computation of visual saliency is based on the notion of a central-
ized saliency map [1] initiated by a feature competition scheme. The
video volume is initially decomposed into a set of feature volumes,
namely intensity, color and spatiotemporal orientations.For the in-
tensity and color features, we adopt the opponent process color the-
ory while spatiotemporal orientations are computed using steerable
filters and measuring their strength along particular directions. The
different orientations are then fused to produce a single orientation
volume. More details can be found in [3]. Volumes for each feature,
are decomposed into multiple scales. The pyramidal decomposition
allows the model to represent smaller and larger events in separate
subdivisions of the channels.

A spatiotemporal saliency volume is computed with the incor-
poration of feature competition by defining cliques at the voxel level
and using an optimization procedure with both inter- and intra- fea-
ture constraints. This is implemented through an energy-based mea-
sure that involves voxel operations between coarse and finerscales
of the pyramid: if the center is a voxel at levelc ∈ {2, ..., p − d},
wherep is the maximum pyramid level andd is the desired depth
of the center-surround scheme, then the surround is the correspond-
ing voxel at levelh = c + δ with δ ∈ {1, 2, ..., d}. Hence, if we
consider the intensity and two opponent color features as elements
of the vector~Fv = [Fv1

, Fv2
, Fv3

] with F 0
vk

corresponding to the
original volume of each, level̀of the pyramid is obtained by convo-
lution with an isotropic 3D GaussianG and dyadic down-sampling
F `

vk
=

(

G ∗ F `−1
vk

)

↓2, ` = 1, 2, ..., p, where↓2 denotes deci-
mation by 2 in each dimension. For each voxelq of volumeF the
energy is defined as

Ev(F
c
vk

(q)) = λ1 · E1(F
c
vk

(q)) + λ2 · E2(F
c
vk

(q)), (4)

whereλ1, λ2 are the importance weighting factors. The first term,
which may be regarded as thedata-term is defined as

E1(F
c
vk

(q)) = F c
vk

(q) · |F c
vk

(q) − F h
vk

(q)| (5)

and acts as a center-surround operator that promotes areas that dif-
fer from their spatiotemporal surroundings, thus attracting attention.
The second,smoothness, term is defined as

E2(F
c
vk

(q)) = F c
vk

(q) ·
1

|N(q)|
·

∑

r∈N(q)

(

F c
vk

(r) + V (r)
)

, (6)

whereV is the spatiotemporal orientation volume that indicates mo-
tion activity in the scene andN(q) is the 26- neighborhood of voxel
q. This involves competition among voxel neighborhoods of the

same volume and allows a voxel to increase its saliency valueonly
if the activity of its surroundings is low enough. By iterative energy
minimization, asaliency volume S is created by averaging the con-
spicuity feature volumesF 1

vk
at the first pyramid level, i.e.,S(q) =

1
3
·
∑3

k=1 F 1
vk

(q).
Visual saliency values for each frame are obtained by first nor-

malizing the feature volumes in[0, 1] and then pointwise multiplying
them by the saliency volumeS(q) in order to suppress low saliency
voxels. The weighted average is taken to produce a value per frame

Sv =

3
∑

k=1

wk

∑

q

S(q) · F 1
vk

(q), (7)

where the inner sum is taken over all the voxels of a volume at the
first pyramid level.

4. TEXT ANALYSIS AND PROCESSING

Subtitles include transcripts of the audio track of videos,as well as,
time stamps roughly corresponding to the location of the transcript
in the audio stream. They are available in all commercially released
video material like movies and TV series. Subtitles are provided in
standardized format consisting of movie transcripts followed by time
stamps, thus making their processing simple.

4.1. Syntactic Text Tagging

The first step of transcript processing consists of shallow syntactic
tagging that includes part-of-speech (POS) tagging. For this pur-
pose, we use a decision-tree-based probabilistic part-of-speech tag-
ger described in [14]. After each word is classified into the corre-
sponding part-of-speech, text saliency weights are assigned to each
word based on the POS tag assigned to that word. As far as semantic
information is concerned, some POS are more important than others.
For example, the most salient POS tags are proper nouns, followed
by nouns, noun phrases and adjectives [15]. Verbs can specify se-
mantic restrictions on their pre-arguments and post-arguments which
usually belong to the aforementioned classes. Finally, there is a list
of words that have very little semantic content; such words are often
referred to as “stop-words” and are filtered out in natural language
processing and web applications. Next, we assign a saliencymea-
sure to groups of POS tags based on the framework outlined above.

POS taggers contain anywhere from 30 to 100 different tags. We
have created six POS classes in order to simplify the text saliency
computation. The first (and most salient) class contains theproper
nouns, e.g., names of movie heroes, cities. The second contains com-
mon nouns, the third contains noun phrases, the fourth adjectives, the
fifth verbs and the sixth class the remaining parts of speech,e.g., pro-
nouns, prepositions, conjunctions, adverbs. The following weights
are assigned1 to each of the six classes: 1.0, 0.7, 0.5, 0.5, 0.5, 0.2.
Note that scores are normalized between 0.2 and 1, i.e., even“stop-
words” are assigned a small weight. All in all, each word is assigned
a saliency score based on the POS category assigned to it by the
tagger.

Next we show the output of the POS tagger and the assigned
weights for two sentences from the movie “Lord of the Rings I”.
Note how proper nouns (PN), e.g. names, are very salient and are
assigned a score of 1, noun phrases (NP) and verbs (VBZ, VVG) a
score of 0.5, while “stop-words” (IN) are assigned a score of0.2.

1One could actually train these saliency scores based on hand-labeled
saliency scores assigned to movie dialogues by users. Here we have cho-
sen a somewhat arbitrary assignment of POS tag classes to saliency scores
based on observations of linguistic experts in [15].



Taken by Isildur from the hand of Sauron
NP NP PN IN NP NP IN PN
0.5 0.5 1.0 0.2 0.5 0.5 0.2 1.0

Evil is stirring in Mordor
NP VBZ VVG IN PN
0.5 0.5 0.5 0.2 1.0

4.2. Audio Segmentation using Forced Alignment

Although it is generally accepted that the movie subtitles provided
by the production company are well synchronized with the audio
stream, it is obvious that sometimes there is a delay in the time that
subtitle appears. To correct such bias, we perform forced segmenta-
tion of the audio stream using the speech transcript and phone-based
acoustic models, i.e., an automatic speech recognition (ASR) sys-
tem. The original timestamps in the subtitles are used to findthe
approximate location of the text in the audio stream, i.e., to initialize
the forced segmentation procedure. We avoid losing relevant speech
segments in the audio stream by adding a small fixed amount of time
before the start time and after the end time of the subtitle timestamps.

Forced segmentation is achieved using the SONIC ASR toolkit
[16]. The acoustic models used were content-dependent tri-phone
hidden Markov models trained on clean speech. The grammar used
is based on the phonetic transcription of the correspondingtext in the
subtitles with garbage models in the beginning and end of each sen-
tence. Informal evaluation of the forced segmentation results showed
good performance on approximately 85% of the sentences analyzed.
Errors occurred for part of the audio stream where speech overlapped
with loud music or noises.

4.3. Text Saliency Curve

Based on the assignment of frames to words from the forced seg-
mentation procedure and the word saliency scores assigned by the
POS tagger a frame-based text saliency curve is computed as

St[m] = wpχp[m],

p ∈ {1, . . . , 6}, wp ∈ {0.2, 0.5, 0.7, 1}, χp[m] ∈ {0, 1}. (8)

5. MULTIMODAL SALIENCY: AUDIO, VISUAL, TEXT

In a video stream with aural, visual and text information available,
attention is modeled by constructing a composite, temporalindex
of saliency. In this final step the various cues are combined in a
multimodal saliency curve (AVT) by low-level fusionSavt[m] =
fusion(Sa, Sv, St, m). A linear or nonlinear fusion scheme can be
employed. In this paper, a weighted linear combination of the audio,
visual and text saliency is used

Savt = waSa + wvSv + wtSt, (9)

where the three curves are weighted equally.This coupled curve
serves as a continuous-valued indicator function of salient events, in
one or more of the aural, visual or textual domains.

6. VIDEO SUMMARIZATION

The segment selection and skim rendering algorithm [5], based on
the multimodal saliency curve follows the steps:

1. AVT is filtered with a median filter of length2M + 1 frames.
2. A saliency thresholdSc is selected so that the requiredper-

cent of summarization c is achieved. Framesn with AVT value
Savt(n) > Sc are selected. For example, for 20% summarization,
c = 0.2, the thresholdSc is selected so that the cardinality of the
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Fig. 1. Saliency curves, annotation and keyframe selection. Human
annotation performed by inspection (middle) and automaticby the
summarization algorithm (bottom). Keyframes displayed are noted
by circles on the AVT curve (“300” movie).

set of selected framesD = {n : Sav(n) > Sc} is 20% of the total
number of frames2. The result is a video frame indicator functionIc

for the desired level of summarizationc.
3. The selected frames are joined into segments. Selected seg-

ments that are shorter thanN frames are deleted from the summary.
This is almost equivalent with the morphological closing ofthe indi-
cator functionIc with a vector of1’s of lengthN + 1.

4. Neighboring segments that are selected for the summary are
joined together if they are less thanK frames apart. This is equiva-
lent to the morphological opening of the indicator functionresulting
from the previous step with a vector of1’s of lengthK + 1.

5. Selected segments are rendered into a summary using simple
overlap-add to tailor together neighboring segments. Linear overlap-
add is applied onL video frames and the corresponding audio sam-
ples. Video and audio processing is synchronous in all steps.

The evaluated version of the algorithm operates withM = N =
20 frames,K = L = 10 frames for videos at 25 frames per second.

7. EVALUATION & DISCUSSION

The developed multimodal saliency-based method was applied for
video summarization on three segments (ca. 5-7 min) from the
movies “Lord of the Rings I” (LOTR1), “300” and “Cold Mountain”
(CM) [5]. In Fig. 1, we give an example of the saliency curves and
their fusion, comparisons of manual vs. automatic saliencyannota-
tion and video abstraction (keyframes and salient segments) for 800

2The threshold is selected globally for short video clips. For longer clips
a segment-based threshold might perform better for video skimming.
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Fig. 2. Subjective evaluation scores of video skims in different rates
(×2, 3, 5), using audiovisual (AV) and multimodal (AVT) saliency.

frames of a scene. Note the agreement of strong peaks in the audio
and visual curves, a result of intentionally added sound andvisual
effects in the scene to draw viewer attention. The salient regions
were estimated computationally as in the summarization algorithm,
by thresholding the median-filtered AVT, using a 41-length filter.
Overall correct salient frame classification exceeded an average of
80% in the three videos for that filter length.

Summaries obtained forc = 0.5, 0.33, 0.2, i.e., skimming 2,
3 and 5 times faster than real time, were subjectively evaluated by
eleven naive subjects in terms of informativeness and enjoyability,
employed in [2, 5], in a 0-100 scale. Each viewer rated both the
multimodal and the audiovisual-only (AV) skims and each score was
normalized by the score given to the original clip. These preliminary
though indicative results, shown in Fig. 2 and Table 1, demonstrate
the capability to generate meaningful skims from generic movie con-
tent. The high values of “300” may be attributed to the fact that
it is an action film with sharp scene changes, soundtrack and crisp
narration. The lower performance of “CM” can be explained bythe
limited use of audiovisual effects, the absence of clear dialog and the
transcribed dialect and expressions not recognized by the text model.
An interesting observation is that all movies in×5 have very similar
ratings, i.e., around60% informativeness and70% enjoyability.

Compared to evaluation of the audiovisual-only framework [5],
informativeness improved relatively by18.2% on the average and
enjoyability by13.8%. We present movie- and skim- depended com-
parisons in Fig. 2. Changes in skim quality, aesthetics and captured
video events that viewers found more essential were most obvious on
the×2 skims. The quality of the resulting audio and video streams,
i.e, smoothness, flow, perceptibility, transition etc., rated from very
satisfying to acceptable as the skim rate increased.

8. CONCLUSIONS

A multimodal saliency curve integrating the aural, visual and text
streams of videos was formed based on efficient audio, image and
language processing and employed as a metric for video eventde-
tection and abstraction. The proposed video summarizationalgo-
rithm is based on the fusion of the three streams and the detection
of salient video segments. The algorithm is generic and indepen-
dent of the video semantics, syntax, structure or genre. Subjec-
tive evaluation showed that informative and pleasing videoskims
can be obtained using such multimodal saliency indicator functions.
The performance of the algorithm is impressive in terms of sum-
mary informativeness given that no high-level features, e.g., plot,
are used by the summarizer. Extensions of this work will include
more sophisticated fusion algorithms, both inside and among the
various modalities, e.g., learning schemes, non-linear feature cor-
relations and variance-adaptive stream weights, the incorporation of
extra higher-level features to movie transcript information, and a sys-
tematic framework for more thorough evaluations of the summariza-
tion algorithm. Sample video skims and on-going evaluations can be

AVT scores and relative improvement to AV
Video x2 x3 x5

Informativeness
LOTR1 86.2 (+15.9%) 76.3 (+28.7%) 60.7 (+30.0%)

300 86.8 (+ 9.8%) 77.9 (+16.1%) 61.4 (+18.4%)
CM 78.4 (+14.9%) 67.1 (+12.3%) 59.3 (+17.3%)

Enjoyability
LOTR1 89.0 (+15.5%) 80.8 (+20.7%) 71.1 (+21.5%)

300 92.4 (+12.7%) 86.0 (+16.3%) 68.6 (+ 9.5%)
CM 84.5 (+ 9.6%) 76.8 (+08.4%) 71.8 (+ 9.9%)

Table 1. Subjective evaluation scores (%) on 0-100 scale.

found athttp://cvsp.cs.ntua.gr/research.
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