
Quantize and Conquer: A dimensionality-recursive solution
to clustering, vector quantization, and image retrieval

Yannis Avrithis
National Technical University of Athens

Abstract

Inspired by the close relation between nearest neighbor
search and clustering in high-dimensional spaces as well as
the success of one helping to solve the other, we introduce
a new paradigm where both problems are solved simultane-
ously. Our solution is recursive, not in the size of input data
but in the number of dimensions. One result is a cluster-
ing algorithm that is tuned to small codebooks but does not
need all data in memory at the same time and is practically
constant in the data size. As a by-product, a tree struc-
ture performs either exact or approximate quantization on
trained centroids, the latter being not very precise but ex-
tremely fast. A lesser contribution is a new indexing scheme
for image retrieval that exploits multiple small codebooks to
provide an arbitrarily fine partition of the descriptor space.
Large scale experiments on public datasets exhibit state of
the art performance and remarkable generalization.

1. Introduction
We often visualize a clustering process in two dimensions
as in Figure 1, where a number of centroids partition the
underlying space into Voronoi cells. Even with k-means,
which is arguably the fastest alternative at large scale, the
cost is dominated by the assignment of data points to the
nearest centroid. It is thus popular to solve this subproblem
by approximate search [20]. In the 2D discrete space of
Figure 1, one may envision solving first the inverse problem
of computing a distance map on the entire 2D grid, which
could then respond to assignment queries by lookup.

By analogy, one may envision image retrieval as a propa-
gation process on this grid, where query descriptors serve as
source points and a local distance map is generated around
these points. Indexed images have their descriptors dis-
tributed on the grid and only those at a specific range from
source points are retrieved. Weighting of points is possible
based on the distance to nearest query point, as specified by
the position on the grid where they are found.

But how about spaces of up to 128 dimensions as in
the case of SIFT descriptors? Unfortunately, the number

Figure 1. Clustering and space partitioning, visualized on 2D dis-
crete space. Coloring of Voronoi cells follows that of the corre-
sponding centroid; patch intensity follows the distance map.

of grid positions increases exponentially in the number of
dimensions, which prevents us from visiting or even repre-
senting the entire space. This is exactly our contribution in
this work: we use a 2D discrete grid not just as an anal-
ogy but to actually solve clustering or search problems in
higher-dimensional spaces. The key idea is that the grid
actually represents a 2d-dimensional space S. The two “di-
mensions” that we see in fact capture the discrete topology
of two subspaces SL, SR, each of d dimensions, that de-
compose S into a Cartesian product S = SL × SR.

In a clustering setting, and assuming that we see cen-
troids as point sources and do compute a distance map via
propagation from the sources to the entire grid, it is possible
to obtain a triangulation as a by-product, having the cluster
centroids as vertices as in Figure 1. The graph represent-
ing this triangulation captures exactly the discrete topology
of the space. Doing this for both SL and SR, we may ap-
ply the same idea to S, ending up with an algorithm that is
recursive in the number of dimensions.

In a retrieval setting, we do not even need a single code-
book for the entire descriptor space. We may start recur-
sion after decomposing e.g. into two or four subspaces,
of dimension 64 or 32 respectively for SIFT descriptors.

1



This corresponds to splitting each vector to e.g. two or four
subvectors, each or which is assigned to a smaller code-
book [12]. Searching is then possible by first finding near-
est neighbors in each individual codebook [2]. We solve
this problem recursively as well.

2. Related work and contribution
Following the success of bag-of-words image retrieval over
fine codebooks [20], several attempts have been made to
alleviate loss incurred by quantization, including e.g. multi-
ple assignment [21], learning even finer codebooks [14], or
embedding more descriptor information [10].

Progress in nearest neighbor search has helped in this di-
rection: product quantization [12, 13] makes it possible to
approximate descriptor distances with a rather small space
overhead and the inverted multi-index [2] turns this idea into
indexing, inducing a very fine partition over the descrip-
tor space via multiple smaller codebooks. Multi-indices are
not new: [18] studies multi-index hashing for fast search in
Hamming space, and in this framework there are much ear-
lier studies like [7].

At the other extreme of a single codebook, scalar quan-
tization [4] offers a lightweight alternative that cannot be
turned into indexing. Other approaches decomposing or
structuring the underlying space exist, e.g. separable dic-
tionaries in the form of a Kronecker product [8]. All such
approaches decompose the input space only once and do not
explore the potential benefit of a hierarchy.

What has captured our attention is that both [12] and [2]
require a number of sub-quantizers that are assumed to be
trained by an independent clustering algorithm, as well as
a way to search into the small individual codebooks, pos-
sibly using an independent nearest neighbor search algo-
rithm. On the other hand, it is known that clustering for
large codebook construction benefits by approximate near-
est neighbor (ANN) search, e.g. in the assignment step of
approximate k-means, requiring an independent ANN al-
gorithm e.g. randomized k-d trees [15].

Our work provides a deeper investigation into this con-
nection. Using a second order index makes search appear
much like local distance propagation on a 2D grid, except
that raw/column ordering on the grid are local, i.e. they de-
pend on the query. During clustering, one requires millions
of queries to the very same points: the cluster centroids.
If the codebooks and consequently the grid are small com-
pared to the number of data points, it makes sense to prop-
agate from centroids to the entire grid rather than to
make queries in the opposite direction. Based on this
idea, we make a number of contributions.

1. We introduce a new clustering paradigm where near-
est neighbor search is handled by distance propagation
on a grid. We devise a dimensionality-recursive vari-

ant of k-means that is self-contained, i.e. it does not
need another algorithm for any sub-problem.

2. We exploit the recursive nature of the algorithm to for-
mulate a tree structure that provides approximate or
exact vector quantization. The former is used during
training and the latter for indexing of new data. It is
probably the first time to perform vector quantization
by lookup in up to 64 dimensions.

3. We explore the use of a higher-order index in the con-
text of image retrieval where we suggest a simple
search alternative to existing solutions that scales to
effective codebook size up to 256 and multiple assign-
ment neighborhoods of up to 228 cells.

Cartesian k-means [17] is another k-means variant on a
Cartesian product but involves no hierarchy and rather fo-
cuses on optimizing subspace selection and rotation, both
represented by an orthogonal matrix. Optimized product
quantization [6] develops the same idea independently, but
also offers a parametric solution that optimizes prior to clus-
tering, which could be combined with our work.

State of the art work on image retrieval focuses on post-
processing and re-ranking methods to improve precision,
for instance query expansion [5, 1], geometry [20, 19, 25],
feature augmentation [27, 1], or k-NN re-ranking [25, 22].
Such studies are beyond the scope of this work, which fo-
cuses on potential improvements from codebook design and
descriptor nearest neighbor search. More relevant are meth-
ods embedding descriptor information like [11] or the more
recent [23, 26]. These are largely complementary, since our
primary contribution concerns off-line processes.

3. Dimensionality-recursive clustering
The basic procedural part of our clustering algorithm is k-
means. This includes random initialization for a predeter-
mined number of centroids, as well as iterative assignment
of points to centroids and centroid update to optimally rep-
resent the underlying points. We adopt a bottom-up descrip-
tion, from the one-dimensional base case to recursion in
higher dimensions. While the former appears like a simple
problem, it actually prepares the ground for the latter.

3.1. The base case: one dimension

Given a set X of N data points lying on a bounded interval
I = [a, b) of R and a target number K > 1 of centroids, we
first construct a uniform partition {x0, . . . , xB} of I with
B � K and xi = a + `i for i = 0, . . . , B, where ` =
(b − a)/B. We thus form a set B = {b0, . . . , bB−1} of
subintervals called bins, where each bin bi = [xi, xi+1) is
of constant length `. By scalar quantization, we allocate
each point x ∈ X to bin bs(x) ∈ B with

s(x) = b(x− a)/`c . (1)



Let Z = {z0, . . . , zB−1} denote the set of midpoints of
subintervals in B. Using Z as a discrete representation of
interval I , the above is equivalent to approximating each
x ∈ X through a map h : I → Z with

x 7→ h(x) = zs(x) = a+ `s(x) + `/2. (2)

Denoting by Xi = X ∩ bi = {x ∈ X : s(x) = i} the set
of data points allocated to bin bi, we empirically measure a
finite probability distribution f , where

fi = |X ∩ bi|/N = |Xi|/N (3)

is the normalized histogram frequency of data in bin bi, for
i = 0, . . . , B− 1. In fact, we may now discard the data; the
distribution contains all the information we need for the re-
maining steps. This approximation may seem unnecessary,
but is a critical component of the recursive case.

We initialize by sampling K points out of Z with
replacement, according to distribution f . Let C =
{c0, . . . , cK−1} be the set of distinct sampled points; this
is the initial set of centroids, which we represent as a se-
quence in ascending order. It is straightforward to see that
it will remain so during course of the algorithm.

The set of centroids determines a quantizer, i.e. a func-
tion q : I → C that maps a point to the nearest centroid,

x 7→ q(x) = argmin
c∈C
‖x− c‖. (4)

The assignment step involves only the restriction q∗ : Z →
C of q to Z, i.e., computing q(z) and storing it as q∗[z] for
all z ∈ Z. This is achieved by partitioning Z into Voronoi
cells, one for each centroid. The (discrete) Voronoi cell Vk
of centroid ck ∈ C is the set of points z quantized to ck,

Vk = {z ∈ Z : q(z) = ck}. (5)

Literally computing Voronoi cells is an easy task in one di-
mension: because centroids are ordered, we find all mid-
points between successive centroids. If mk is the midpoint
of interval [ck−1, ck) for k = 1, . . . ,K − 1 and we define
m0 = a, mK = b, then for all k = 0, . . . ,K − 1,

Vk = Z ∩ [mk,mk+1), (6)

and for all z ∈ Vk, we assign q∗[z]← ck. This operation is
clearly linear-time in |Z| = B.

The update step for centroid ck ∈ C simply requires
weighted averaging of points over its Voronoi cell Vk,

ck ←
∑

i:zi∈Vk

fizi. (7)

At termination, we approximate q(x) for x ∈ X (sec-
tion 4.1) and construct a graph G = {C,E} with edges
E = {(ck, ck+1)

1 : k = 0, . . . ,K − 2} between successive
centroids, representing a neighborhood system over I .

1Here (ck, ck+1) denotes a pair, not an open interval.

3.2. Recursion

Recursion assumes that a space S is decomposed into two
subspaces that have been clustered, each producing a set
of centroids, a set of labels for quantized data points, and
a graph representing its topology. Based on this subspace
information, we cluster S and produce exactly the same in-
formation for it. What we are actually doing is learning a
joint distribution from two marginal ones.

More formally, assume a 2d-dimensional space S de-
composed into a product SL × SR of d-dimensional sub-
spaces SL, SR, a set X of N data points lying on an in-
terval I = IL × IR of S, and a target number K > 1
of centroids in I . Let xL, xR be the projections of x onto
SL, SR respectively, that is, x = (xL, xR)2 for x ∈ X .
Also assume that the corresponding sets of projected points
XL, XR have been clustered, giving rise to two sets of
centroids CL, CR, each of cardinality J . Assume as well
that each projected point xL (respectively, xR) has been
quantized to qL(xL) ∈ CL (respectively, qR(xR) ∈ CR).
Finally, assume that two graphs GL = {CL, EL} and
GR = {CR, ER} representing neighborhood systems over
IL, IR respectively are available. Accordingly, a graph
G = {C,E} representing a neighborhood system over I
is to be computed as a by-product of clustering X .

Let Z = CL × CR be a grid of B = J × J points in
S. As in the one-dimensional case, we see Z as a discrete
representation of I giving rise to a set of bins, and we ap-
proximate each x ∈ X via a map h : I → Z as

x 7→ h(x) = (qL(xL), qR(xR)). (8)

If Z is written as {z0, . . . , zB−1}, let f denote the finite
probability distribution as measured empirically by normal-
ized frequencies of data points into bins, such that fi is
the probability of zi. We then initialize centroids C =
{c0, . . . , cK−1} by sampling K points out of Z with re-
placement, according to distribution f .

The problem in the assignment step is to quantize each
point z ∈ Z to the nearest centroid q(z) ∈ C. This is cer-
tainly harder than (6) in the one-dimensional case and is in
fact the bottleneck of the algorithm. We leave this discus-
sion for section 3.3. The update step is identical to (7).
At termination, we map centroids to the nearest points in Z
(via (8)) and approximate q(x) for all x ∈ X (section 4.1).
GraphG is computed once at the final assignment step, also
discussed in section 3.3.
Discussion and analysis. This new k-means variant is
called dimensionality-recursive clustering (DRC). It can be
applied recursively on the number of dimensions to cluster
points in RD where D is a power of 2 or indeed any in-
teger, with slight modifications. This takes log2D levels
of recursion and its output is not merely a set of centroids

2xL, xR are d-tuples; (xL, xR) is their concatenation into a 2d-tuple.



and a corresponding set of labels for the data points, but a
tree structure that can perform approximate or exact near-
est neighbor search over the centroids, as discussed in sec-
tion 4. DRC may be generalized to any space that can be
hierarchically decomposed into Cartesian products of sub-
spaces where clustering can be solved more easily.

An interesting aspect of this new clustering paradigm is
that not all data are required in memory at the same time:
whenever probability distribution f is available over Z, we
are free to discard labels qL(xL), qR(xR), while data points
xL, xR are never actually stored. Given N D-dimensional
data points, the space needed for data is O(N) instead of
O(ND). On the other hand, O(K2) space is needed to
represent grid Z, and this limits the size of produced code-
books. K is assumed to increase with dimensionality d.

3.3. Propagation

The problem of the assignment step is to compute
q(z) (4) and store it as q∗[z] for all z ∈ Z = CL × CR.
This is equivalent to computing a distance map over Z with
C as source points, and can be solved efficiently by dis-
tance propagation using a fast marching method [24]. How-
ever, domain Z is not a 2D space here. The underlying
space topology is represented by graphs GL, GR, which
in fact describe triangulations over CL, CR respectively.
Hence a fast marching method over a triangulated domain
applies [3], except for the fact here we have a product of
two such domains.

Our algorithm, called product propagation (PP), is remi-
niscent of Dijkstra’s algorithm as any fast marching variant
and is outlined in Algorithm 1. The key data structure is a
min-priority queue Q that lets us visit each point z ∈ Z ex-
actly once in ascending order of the distance to the nearest
centroid. This distance is maintained as property dist[z] for
all z and is the KEY value associated to z for Q.

To initialize, we map each centroid c ∈ C to h(c) as
given by (8) and use all mapped points as sources, to enter
Q first. At each iteration, it is the underlying graphs that
guide exploration of the grid: given the current point z =
(zL, zR), we examine neighbors EL(zL), ER(zR) in turn
and propagate accordingly.

Centroids are sampled on the grid initially and mapped
again to the grid at termination. But during k-means it-
erations, they are arbitrary points in space S as computed
by (7). To measure the exact distance of a given point
x = (xL, xR) ∈ S to a point on z = (zL, zR) the grid, we
assume that the underlying codebooks can compute squared
Euclidean distances δL(xL, zL), δR(xR, zR) for the pro-
jected points. Then, the required (squared) distance is

δ(x, z) = δL(xL, zL) + δR(xR, zR). (9)

Since centroids remain constant during propagation, re-
quired distances δ(c, z) are efficiently found via (9) by look-

Algorithm 1: Product propagation
1 function (q∗, E)← PP(C,Z, h, δ;EL, ER, τ)
2 E ← ∅; initialize queue Q
3 for z ∈ Z do state[z]← ALIVE . initialize state
4 for c ∈ C do PUSH(c, h(c)) . initialize sources
5 while ¬Q.EMPTY() do
6 z ← Q.EXTRACT-MIN()
7 state[z]← FAR; c← q∗[z]

8 for y ∈ EL(zL) do SCAN(c, (y, zR))

9 for y ∈ ER(zR) do SCAN(c, (zL, y))

10 return (q∗, E)

11 function SCAN(c, z)
12 if state[z] = ALIVE then PUSH(c, z)
13 if state[z] = CLOSE then RELAX(c, z)
14 if state[z] = FAR then JOIN(c, z)

15 function PUSH(c, z)
16 dist[z]← δ(c, z); q∗[z]← c
17 Q.INSERT(z); state[z]← CLOSE

18 function RELAX(c, z)
19 d← δ(c, z)
20 if d < dist[z] then
21 dist[z]← d; q∗[z]← c
22 Q.DECREASE-KEY(z, d)

23 function JOIN(c, z)
24 if δ(c, z) + dist[z] < τ then
25 E ← E ∪ (c, q∗[z]) . update edges E

ing up precomputed values of δL, δR.
As a by-product, edgesE of graphG are generated wher-

ever two propagating fronts meet. As shown in Algorithm 1,
edges can be updated during propagation. However, this is
in fact not repeated during every k-means iteration; it sim-
ply occurs once at termination.

The bottleneck of the entire clustering algorithm is dis-
tance propagation: with a binary heap for the priority
queue, the time complexity of propagation on a K × K
grid is O(eK2 logK), where e is the maximal degree of
the graph. A Fibonacci heap yields O(eK2), but is not any
faster in practice. To limit the queue length, we prune edges
as shown in line 24, where threshold τ is specified as a frac-
tion of the average distance of all centroids to all bins. There
is no guarantee that the entire grid will be explored at termi-
nation under pruning, but in practice we have verified that
with τ = 0.35, all grid positions are indeed visited.

4. Dimensionality-recursive quantization
The outcome of clustering as described so far is a set of cen-
troids, a set of data labels, and a graph representing a neigh-
borhood system. But there is more than that. Clustering of
one space relies on clustering of two underlying subspaces,



and this recursive implementation gives rise to a tree struc-
ture: each produced codebook is a node in the tree and an
one-dimensional codebook is a leaf. This hierarchy refers
to subspace structure or dimensionality and not to locality
or data size as in typical hierarchical approaches [16].

Each codebook is equipped with appropriate informa-
tion to recursively respond to approximate or exact nearest
neighbor queries over its centroids, simply by delegating
queries to its child nodes and aggregating. The two op-
tions are separately discussed below. We refer to both as
dimensionality-recursive quantization (DRQ).

4.1. Approximate quantization

In one dimension, a given new point x in interval I can
be mapped to z = h(x) ∈ Z, exactly as we did during
training (2). In turn, z is mapped to a unique centroid q(z) ∈
C, and q∗[z] is stored for all z ∈ Z. Hence a leaf codebook
can approximate q(x) by q(z) = q∗[h(x)] ∈ C via scalar
quantization followed by lookup.

In the general 2d-dimensional case, given a new point
x = (xL, xR) ∈ I , the child codebooks can generate ap-
proximations of qL(xL), qR(xR) respectively. This gives
rise to a point z = h(x) on the grid (8). The node has again
q∗[z] stored for all z ∈ Z, so it can approximate q(x) by
q(z) = q∗[h(x)] ∈ C via simple lookup.

Vector quantization via a sequence of scalar quan-
tization and lookup operations achieves unprecedented
speed as we shall see in section 6. For a space of dimension-
alityD that is a power of 2, onlyD scalar quantizations and
2D− 1 lookups are needed. The time complexity, O(D), is
then constant in K. Alas, its precision is not adequate e.g.
for labeling new vectors for retrieval applications. Still, this
kind of vector quantization is enough for training purposes.
This is exactly how we implicitly treat input data during the
assignment step of k-means, and it renders training virtually
constant in the data size.

4.2. Exact quantization

In one dimension, each leaf codebook stores the original K
scalar centroids, so given a new point x ∈ I it can respond
with a K-vector of squared distances δ(x, c) = (x− c)2 of
x to all centroids c ∈ C.

In the recursive case, given a new point x = (xL, xR) ∈
I , the node first requests from its child codebooks the
squared Euclidean distances δL(xL, zL), δR(xR, zR), for
all zL ∈ CL and all zR ∈ CR. It then computes δ(x, c)
according to (9) for all c ∈ C. At the root of the tree, x can
be quantized as

q(x) = argmin
c∈C

δ(x, c). (10)

The idea is similar to product quantization [12] which em-
ploys only one level of decomposition. We rather decom-
pose from the original space dimension D down to scalars.

The computation is self-contained because it does not re-
quire another algorithm for the sub-quantizers. It is exact
because node centroids are not arbitrary vectors but quan-
tized and stored as coordinates on the grid.

5. Image indexing and retrieval
Applied to nearest neighbor search or image retrieval, our
approach is tuned to rather small codebooks that can how-
ever quantize subspaces of the target descriptor space. We
focus on image retrieval, applying DRC and DRQ but
choosing to start recursing a number of levels below the tar-
get dimension D, yielding a forest of quantizers.

5.1. Multi-indexing

We assume n root codebooks, each of J centroids, inducing
a partition of the D-dimensional domain I into B = Jn

cells3. An input vector x ∈ S is now split into n sub-
vectors, each quantized separately by one of the codebooks.
As it stands, this representation is the same with product
quantization [12]. However, instead of storing quantized la-
bels per input data, it is possible to invert the representation
when n is small, actually storing input data per label.

This leads to multi-indexing, that is, encoding index cells
by n different codes and storing data appearing within each
cell; n is called the order or dimension of the index. For
instance, the inverted multi-index [2] focuses on the second-
order case n = 2, performing full inversion. As explained
in section 6, we attempt larger n where full inversion is not
possible because the effective codebook size Jn becomes
prohibitive. For instance, J = 4096 = 212 and n = 4
yields a partition of B = 248 cells.

For this reason we follow partial inversion, that is, we
marginalize this fine partition along one or more dimen-
sions. In our experiments for instance, we keep J2 cells for
inverted indexing in two dimensions, and embed the labels
for the remaining two dimensions along with data. With 12
bits required for each label, this takes 24 bits per data point
in addition to the image id, which is only stored once per
point. Varying J and nmay give more options in the design
of a large scale retrieval system.

5.2. Retrieval

Searching in a higher-order index is certainly more demand-
ing than in a plain inverted file. Because of the extremely
fine partition, multiple cells need to be looked up, in the
spirit of multiple assignment [21]. That is, choose the k
nearest neighbors per codebook for each query vector by
the exact search (section 4.2), and then search among the
kn possible neighbor cell combinations. The cost is expo-
nential in the order of the index.

3In the context of clustering in section 3, these are referred to as bins,
while (Voronoi) cells are collections of bins, one per centroid. The termi-
nology here is aligned to related work.



One solution is the multi-sequence algorithm of [2], a
simplified version of distance propagation in two dimen-
sions, which visits cells in ascending order of distance from
the query cell. However, it needs to explicitly store state per
cell and this is prohibitive for large kn, especially for image
retrieval where thousands of queries are needed.

Another solution is to store n separate indices and search
each independently for only a fraction of the k neighbors,
generating n candidate lists to be verified against each
other [18]. This is faster and avoids the kn storage per query
point, but multiplies the index size by a factor of n.

We rather follow a simple scheme that we call rank sum:
we pre-compute all n-tuples α = (α0, . . . , αn−1) with sum

|α| =
n−1∑
i=0

αi ≤ k (11)

and use them to visit all neighbor combinations having sum
of ranks up to k. This choice approximates the neighboring
cells visited by the multi-sequence algorithm but avoids the
kn storage and is much faster especially for large n, because
neighbors are precomputed.

Entries found in all neighboring cells are weighted by an
asymmetric distance between uncompressed query vectors
and quantized database vectors. Formally, given query x =
(x0, . . . , xn−1), each of the k-nearest neighbors zij ∈ Ci in
codebook i for j = 0, . . . , k−1, is associated with an exact
squared Euclidean distance δi(xi, zij) for i = 0, . . . , n− 1.
Then, the squared distance to neighboring cell

zα = (z0α0
, . . . , zn−1αn−1

) (12)

is given by

δ(x, zα) =

n−1∑
i=0

δi(xi, ziαi
), (13)

similarly to (9). Finally, entries found in a cell at squared
distance δ are weighted by w(δ) = e−δ/σ

2

where σ is a
scale parameter, similarly to [21].

In the case of partial indexing, we only get a partial sum
of (13) from the position of a cell. This partial sum is com-
pleted per entry (image id) using codes embedded per entry
in the index. In other words, the cell contains a list of can-
didate neighbors and sum (13) is used to verify whether an
entry belongs to a true neighbor or not.

6. Experiments

Our main contribution refers to off-line processes, i.e.
dimensionality-recursive clustering (codebook training)
and vector quantization. On-line applications like nearest
neighbor search and image retrieval mainly serve as valida-
tion. We focus on the latter in this work.

K
log2Kd for dimension d time (m)1 2 4 8 16 32

16K 6 7 8 9 11 14 129.96
8K 6 7 8 9 11 13 119.43
4K 6 7 8 9 10 12 20.07
2K 5 6 7 8 9 11 2.792
1K 5 6 7 8 9 10 2.608

512 4 5 6 7 8 9 0.866

4K Approximate k-means [20] 504.2

Table 1. Codebook setup and training times for varying codebook
size K. Codebook size Kd for dimension d is given as a power
of two. E.g., for K = 16K, we get 214 = 16K (target codebook
size) for d = 32, which is trained on a 211 × 211 = 2048× 2048
grid, since codebooks at the previous level d = 16 are of size
211. Times refer to n = 4 codebooks on the N = 12.5M 128-
dimensional SIFT descriptors of Oxford 5K.

6.1. Datasets and evaluation protocol

We apply our methods to specific object retrieval and eval-
uate on two public datasets, namely Oxford buildings [20]
and Paris [21], containing 5062 and 6412 images, as well as
55 queries each. We train codebooks on both datasets and
evaluate retrieval performance on the same or on different
datasets. At larger scale, we also use the additional 100K
distractor images provided with Oxford buildings. We refer
to datasets as Oxford 5K / Paris 6K without distractors, and
Oxford 105K / Paris 106K with distractors.

We use features detected with the modified Hessian-
affine detector and SIFT descriptors of [19], using the same
settings as in [19] including the gravity vector assumption,
producing e.g. a set of 12.5M features in total for Oxford
5K. We normalize SIFT descriptors as in RootSIFT [1], that
is, `1-normalize and take square root element-wise.

For vector quantization, we measure performance by
Recall@R, i.e., the proportion of queries for which the
nearest neighbor is ranked in the first R positions [12]. For
retrieval, we use the protocol of [20], measuring perfor-
mance by mean Average Precision (mAP), where good and
ok images are treated as correct and junk as if they are not
in the database. All times refer to single-threaded C++ im-
plementations on a 3GHz Core i7 CPU with 24GB RAM.

6.2. Results

Training. As discussed in the retrieval experiments, we
choose to focus on fourth order indices, that is, we decom-
pose the 128-dimensional SIFT descriptor space into n = 4
32-dimensional subspaces. Table 1 shows the setup of the
training process for varying target codebook size K. The
size Kd of each child codebook increases with the dimen-
sionality d of the underlying subspace. It is clearly seen that
the training time depends explicitly on the codebook size at
d = 16, which determines the size of the grid where the
root codebook is trained.



K 16K 8K 4K 2K 1K 512

Approximate (µs) 0.95 0.83 0.80 0.73 0.80 0.90
Exact (ms) 1.19 0.79 0.51 0.26 0.21 0.11

Table 2. Vector quantization times per point for varying codebook
size, averaged over the N = 75K SIFT descriptors of the 55
cropped query images of Oxford 5K.

101 102

0.6

0.8

1

Recall@R

R K = 16K
K = 8K
K = 4K
K = 2K
K = 1K
K = 512

Figure 2. Recall@R performance of approximate vector quantiza-
tion for varying codebook size, averaged over the query images of
Oxford 5K.

The above reveals that the bottleneck of the algorithm is
distance propagation on the grid. At the given sizes, training
is much more efficient than e.g. approximate k-means [20]
(25× faster); however at larger sizes it becomes impractical.
It is interesting that training is independent of the data size,
N . Averaging over 15 runs for K = 4K and N varying
from 2.5M to 12.5M, we have found that training time does
not increase with N .

Vector quantization. Table 2 shows average vector quan-
tization times. Our exact quantization comes at a speed
that offers a practical alternative over other approximate
schemes, and this is exactly what we have used to label im-
ages for indexing. For instance, FLANN [15] takes 0.118ms
per point on average at the same setup for a 4K codebook
using 200 checks, corresponding roughly to a precision of
98%. Our approximate, lookup-based scheme offers un-
precedented speed, but its performance is quite low as re-
vealed in Figure 2. Although this is not adequate for label-
ing images, it is still appropriate for training.

Indexing. Our initial target has been a second order index.
However, we have only achieved mAP performance up to
0.66 with codebooks of size up to 65K2, where behavior is
not much different than a standard inverted file and training
times become an obstacle. Although there is still space for
experiments, we have decided to move on to the unexplored
area of a fourth order index with codebook size J4.

0 50 100 150

0.6

0.65

0.7

k-nearest neighbors

m
A

P J = 16K
J = 8K
J = 4K
J = 2K
J = 1K
J = 512

Figure 3. mAP performance versus k-nearest neighbors in our
fourth order indexing scheme for varying codebook size on Ox-
ford 5K, also trained on Oxford 5K.

Figure 3 shows that up to J = 2K, the behavior is sim-
ilar to standard multiple assignment: mAP exhibits a peak
and begins to drop due to additional distractor noise. The
situation changes radically for larger codebooks, however.
It appears that the space partition becomes so fine that mAP
continues to increase for large number of neighbors k, and
the only limit is the search time. We choose J = 4K be-
cause at k = 90 it outperforms the 8K codebook; and we
choose k = 90 to keep query times below one second for all
remaining experiments. At these settings, the average query
time is 989ms on Oxford 5K.

Retrieval. We focus on performance evaluation relating
codebooks, descriptor encoding and indexing. We compare
to methods using multiple assignment or embedding addi-
tional descriptor information, but not other complementary
re-ranking methods. We fix scale parameter σ2 to 0.05,
found to be optimal on all datasets. Table 3 compares our
solution to the state of the art on different combinations of
training and test sets or distractors.

We clearly outperform most methods. It is also remark-
able that searching on the same or on a different dataset
than the training one has little impact, unlike most known
methods. [19] is superior at the Oxford5K/Oxford5K com-
bination, but using a different test set is more important in
general to avoid over-fitting behavior. [14] is superior when
using alternative words, but this method is not really com-
parable as it employs large scale learning over a different
training set of millions of images using geometry.

7. Discussion
We have investigated the relation between nearest neighbor
search and clustering in high dimensional spaces, provid-
ing deeper insight and a new paradigm that may open new
directions in numerous applications. We have shown that



Training set Oxford 5K / other [*] Paris 6K / other [*]
K MA OtherTest set Ox5K Ox105K Pa6K Pa106K Ox5K Ox105K

This work 0.716 0.657 0.696 0.584 0.703 0.640 4K4 X
Perdoch et al. [19] 0.717 0.568 — — 0.558 0.423 1M
Arandjelovic et al. [1] 0.683 0.581 — — — — 1M
Shen et al. [25] 0.649 0.568 — — — — 1M
Philbin et al. [21] 0.614 0.498 — — 0.403 0.290 1M
Philbin et al. [21] 0.673 0.534 — — 0.493 0.343 1M X
Philbin et al. [20] 0.618 0.490 — — — — 1M
Jegou et al. [10] — — — — 0.615 0.516 200K X HE, WGC
Jegou et al. [9] — — — — 0.647 — 20K X HE, WGC
Mikulik et al. [14] — — 0.625* 0.533* 0.618* 0.554* 16M X
Mikulik et al. [14] — — 0.749* 0.675* 0.742* 0.674* 16M * Learning

Table 3. mAP performance on different combinations of training and query / test sets, comparing our work to number of state of the art
methods. K = codebook size. MA = multiple assignment. HE = Hamming embedding. WGC = weak geometric consistency.

a single recursive data structure is enough for all related
problems, from codebook construction and database label-
ing, to indexing and search. In image retrieval, we have
investigated higher order indices that offer remarkable gen-
eralization but do not scale well, hence mostly serve as a
validation for our off-line solutions. A coarse/fine approach
would be more practical as in [12]. Nearest neighbor search
is another application we are currently investigating.

References
[1] R. Arandjelovic and A. Zisserman. Three things everyone

should know to improve object retrieval. In CVPR, 2012. 2,
6, 8

[2] A. Babenko and V. Lempitsky. The inverted multi-index. In
CVPR, 2012. 2, 5, 6

[3] T. J. Barth and J. A. Sethian. Numerical schemes for the
Hamilton–Jacobi and level set equations on triangulated do-
mains. Journal of Computational Physics, 145(1), 1998. 4

[4] J. Brandt. Transform coding for fast approximate nearest
neighbor search in high dimensions. In CVPR, 2010. 2

[5] O. Chum, A. Mikulik, M. Perdoch, and J. Matas. Total recall
II: Query expansion revisited. In CVPR, 2011. 2

[6] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quan-
tization for approximate nearest neighbor search. In CVPR,
2013. 2

[7] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for
information retrieval. In FOCS, 1994. 2

[8] S. Hawe, M. Seibert, and M. Kleinsteuber. Separable dictio-
nary learning. Technical report, 2013. 2

[9] H. Jégou, M. Douze, and C. Schmid. On the burstiness of
visual elements. In CVPR, 2009. 8

[10] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-
features for large scale image search. IJCV, 87(3), 2010.
2, 8

[11] H. Jégou, M. Douze, and C. Schmid. Exploiting descriptor
distances for precise image search. Technical report, 2011. 2

[12] H. Jégou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. PAMI, 33(1), 2011. 2, 5, 6, 8

[13] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Search-
ing in one billion vectors: Re-rank with source coding. In
ICASSP, 2011. 2

[14] A. Mikulik, M. Perdoch, O. Chum, and J. Matas. Learning
vocabularies over a fine quantization. IJCV, 2012. 2, 7, 8

[15] M. Muja and D. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. In ICCV, 2009. 2, 7

[16] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In CVPR, 2006. 5

[17] M. Norouzi and D. Fleet. Cartesian k-means. In CVPR,
2013. 2

[18] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in Ham-
ming space with multi-index hashing. In CVPR, 2012. 2,
6

[19] M. Perdoch, O. Chum, and J. Matas. Efficient representation
of local geometry for large scale object retrieval. In CVPR,
2009. 2, 6, 7, 8

[20] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In CVPR, 2007. 1, 2, 6, 7, 8

[21] J. Philbin, O. Chum, J. Sivic, M. Isard, and A. Zisserman.
Lost in quantization: Improving particular object retrieval in
large scale image databases. In CVPR, 2008. 2, 5, 6, 8

[22] D. Qin, S. Gammeter, L. Bossard, T. Quack, and
L. Van Gool. Hello neighbor: Accurate object retrieval with
k-reciprocal nearest neighbors. In CVPR, 2011. 2

[23] D. Qin, C. Wengert, and L. Van Gool. Query adaptive simi-
larity for large scale object retrieval. In CVPR, 2013. 2

[24] J. Sethian. Fast marching methods. SIAM Review, 41(2),
1999. 4

[25] X. Shen, Z. Lin, J. Brandt, S. Avidan, and Y. Wu. Object re-
trieval and localization with spatially-constrained similarity
measure and k-nn re-ranking. In CVPR, 2012. 2, 8

[26] G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not
to aggregate: Selective match kernels for image search. In
ICCV, 2013. 2

[27] P. Turcot and D. Lowe. Better matching with fewer features:
the selection of useful features in large database recognition
problems. In ICCV, 2009. 2


