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Abstract. We believe that the potential of edges in local feature detec-
tion has not been fully exploited and therefore propose a detector that
starts from single scale edges and produces reliable and interpretable
blob-like regions and groups of regions of arbitrary shape. The detec-
tor is based on merging local maxima of the distance transform guided
by the gradient strength of the surrounding edges. Repeatability and
matching score are evaluated and compared to state-of-the-art detectors
on standard benchmarks. Furthermore, we demonstrate the potential ap-
plication of our method to wide-baseline matching and feature detection
in sequences involving human activity.

1 Introduction

Local features and descriptors are very successful in providing a compact rep-
resentation for image matching, with applications to registration, wide baseline
matching, retrieval, object recognition and categorization [1]. Affine-covariant
regions are among the most popular features, being robust to occlusion and
viewpoint changes. Their performance is typically measured by repeatability and
matching score under a number of transformations. According to the study by
Mikolajczyk et al . [2], the best performing detectors have been the maximally
stable extremal region (MSER) [3] and Hessian-affine [4] detectors. More recent
studies have identified a number of weaknesses in existing detectors or suggested
new measures or desired properties like compactness [5] or image coverage [6].

We make an attempt to address a number of these issues in this work, while
at the same time paying particular attention to a fast implementation, achiev-
ing competitive performance and in certain cases outperforming the state of the
art. Surprisingly, our starting point is quite simple and, in a sense, one of the
least expected: single scale edges. While powerful in providing an abstraction
mechanism for many computer vision tasks, edges have not been quite success-
ful in affine region detection so far. One example is edge-based region (EBR)
detector [7], performing among the lowest in [2]. On the other hand, mainly
motivated by Lindeberg’s theory [8], one of the key ingredients of many region
detectors is scale selection. Notable examples are the Hessian-affine and Lowe’s
SIFT [9] detectors, while the MSER detector’s single scale operation may be
connected to region density issues and the effect of blur [6]. The question is
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then, how can we use a fragile structure like a set of single scale edges to detect
repeatable features?

We choose to start from the binary map of the finest scale edges and detect
local maxima of its Euclidean distance transform (EDT). In areas of uniform
intensity and in the absence of spurious edges, such points are expected to lie
on the interior of blob-like regions or close to ridges [10]. It then makes sense
to use them as region seeds, much like local intensity extrema are employed
in the intensity extrema-based region (IBR) detector [11]. On the other hand,
while spurious structures appear almost everywhere in the finest scale, their edge
strength is informative of their potential evolution in scale space. This is justified
by the monotone decrease of edge strength with scale, as a result of smoothing,
and subsequent decrease in the amplitude of local variations [10].

We therefore greedily merge local maxima of the distance transform, guided by
the strength of surrounding edges. If our assumption is correct, this process will
be similar to iteratively removing spurious edges and eventually reproduce the
effect of scale space evolution, by merely manipulating a sparse set of points. The
merging process is the one used in graph-based image segmentation [12]. How-
ever, instead of constructing a disjoint partition, we select multiple overlapping
regions according to a number of different criteria during merging.

Finally, a region is defined by a selected set of maxima and a surrounding
set of points, to which an ellipse is fitted. This is again similar to IBR detector,
where the intensity pattern along rays emanating from seed points is analyzed.
The main difference here is that a selected region corresponds to the union of a
set of initial seeds, thus adapting to areas of arbitrary shape, much like MSER.
Further, in contrast to EBR and other edge related methods, disconnected edges
due to weak responses and thresholding are not an issue here, since the method
automatically selects appropriate regions. Although not affine-covariant by con-
struction, the performance of our detector is quite competitive in relevant bench-
marks. We also qualitatively evaluate our approach in wide-baseline matching
on sequences involving human activity.

2 Related Work

Recent advances on region detectors have focused on a number of properties
or criteria while keeping repeatability close to the state of the art. We follow a
similar structure in our analysis below.

An important property is speed, and has been particularly investigated for
detectors based on the Laplacian of Gaussian (LoG) and subsequent scale selec-
tion [8], as well as affine adaptation using the second moment matrix [13] or the
Hessian matrix [4]. An example is the approximation of LoG with difference of
Gaussians (DoG) in SIFT detector [9], also seen as a center-surround operation
in CSDD detector [14]. Other examples are the approximations in image space
using integral images for rectangular region approximation of the Hessian matrix
as in SURF detector [15], or even octagonal region approximation of the DoG in



Lecture Notes in Computer Science: Authors’ Instructions 3

CenSurE detector [16]. Clearly, the increased speed comes at the cost of certain
performance drop due to the coarser approximation of region shape.

The MSER detector has the ability to fit regions of arbitrary shape. Building
on the entropy-based salient region detector of Kadir and Brady and its affine
adaptation of [17], the structure guided salient region (SGSR) detector of [5] sup-
ports this view, by employing MSER regions as seeds. On the other hand, MSER
typically detects a small number of regions that, though repeatable, sample only
a small part of the image. Clearly, this is problematic when e.g . the limited
set of detected regions in an image is occluded in another. Stable affine frames
(SAF) [6], extend to possibly unstable regions in an attempt to increase image
coverage. The latter is, informally, the spatial extent of detector responses for a
given number of correspondences and has been evaluated by visual inspection.

The performance of many detectors drops significantly when they are re-
quested a small number of features. This is particularly true for the Hessian-
affine detector, which densely detects regions of different scales or orientations
at the same location. Clearly, a compact representation is crucial in large scale
applications where computation and memory requirements are of primary im-
portance. Compactness has been identified in [5] as the ability of a detector to
preserve a competitive performance (measured e.g . in repeatability or matching
score) under such limitations.

Figure-ground segmentation is discussed in Collins and Ge [14], where the
idea is to detect not only blobs of uniform intensity but groups of such blobs
as well; this is illustrated in the example of the yin-yang symbol in [14], which
we repeat for our detector in section 3. Feature grouping is another line of re-
search typically considered at higher levels of analysis and often during matching,
e.g . the semi-local approaches of [18], [19], hyperfeatures [20] and many others.
However, if appropriately integrated in a detector it is related to repeatability
performance. Segmentation, like edge detection, has often been considered an
abstraction mechanism that is not stable enough for the purpose of repeatable
region detection. The recent experiments of Koniusz and Mikolajczyk [21] do not
look promising either. Higher-level tasks typically combine multiple segmenta-
tions [22]. However, we claim that selecting multiple overlapping regions during
the segmentation process can be repeatable.

3 The algorithm

Given an image, we would like to decompose it into a set of sparse but repeatable
and interpretable features that will represent well the underlying local structure
and will not focus only on corners or homogenous regions. The work of Tuytelaars
et al . has highlighted several drawbacks in using edges for feature detection
and this is why they have proposed the IBR detector [11] as a complementary
to EBR [7]. We believe that the potential of edges in local feature detection
has not been fully exploited and propose a detector that overcomes most of
the weaknesses of previous work. In particular, the distance transform can help
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recover from broken edges, and relaxed edge grouping can help recover from
partially undetected edges or other topological changes across images.

Inspired by [14], Fig. 1 presents regions detected in an image of the yin-yang
symbol by our detector along with other common detectors, namely Harris-affine
and Hessian-affine [4], Lindeberg’s primal sketch [8], MSER [3] and SIFT [9]. It is
clear that with a very small number of detected regions all elements of the figure
are captured at all scales by our detector. The large circular region is included
despite the intensity variation. We will show in section 4 that this property is
achieved without sacrificing repeatability.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Detection results for different detectors. (a) DistDetector (#12); (b) Harris-
affine (#102); (c) Hessian-affine (#125); (d) Primal sketch (#6); (e) MSER (#27); (f)
SIFT (#25). The number in parentheses indicate the number of detected features.

3.1 Image decomposition

We will use the same example of the yin-yang symbol to illustrate the main
steps of the algorithm. Given an input image I defined on a lattice Q as shown
in Fig. 2a, we apply Canny edge detection [23] to get a binary edge map. Let
F ⊂ Q be the set of pixels on the edge map. If I is convolved with a Gaussian
derivative ∇Gσ of scale σ, let g = ‖∇Gσ ?I‖ be the relevant gradient magnitude,
signifying the edge strength. A clean edge map is not crucial. On the contrary,
we set the scale parameter σ and the hysteresis thresholds τh, τ` of the detector
such that all distinctive image structures along with a large number of spurious
edges are detected, as in Fig. 2b. This edge map corresponds to a fine scale and
we will use g to reproduce coarser scales in subsequent steps.
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The next step is to compute the Euclidean distance transform D on the edge
map. That is, for each p ∈ Q, the distance D(p) to the nearest image edge:

D(p) = min
q∈F

(‖p− q‖) , p ∈ Q. (1)

We use the linear-time algorithm Felzenszwalb and Huttenlocher [24] to compute
the EDT, as in Fig. 2c. We then detect the local maxima of D, typically lying on
the interior of blob-like regions or ridges. The set V of the maxima is obtained
using gray-scale morphological gradient:

V = {p ∈ Q : (D ⊕B)(p)−D(p) = 0} , (2)

where (D ⊕ B) denotes gray-scale dilation of D by structuring element B. In
most cases V is a sparse set of points as shown in Fig. 2d, superimposed on the
EDT. A large number of maxima lies between spurious edge fragments, and a
merging process on the maxima will be equivalent to iteratively removing the
fragments in non-decreasing order of gradient g.

We represent geometry using the Delaunay triangulation of the initial set V
of maxima, as shown in Fig. 2e. Seeing points of V as vertices in the Delaunay
graph G such that G = (V,E), two adjacent vertices u, v ∈ V will correspond to
two neighboring local maxima of D. If there is no edge fragment lying between
u, v, this means that u and v are likely to lie within the same region or along
a ridge; otherwise, the strength of the edge fragment will determine at which
iteration u and v will be merged, which would be equivalent to removing the
fragment.

We capture this information in the graph by assigning a weight to each
Delaunay edge, observing its intersections with image edges. Formally, for each
Delaunay edge e = (u, v) ∈ E, let `(e) denote the set of points in Q lying on a
linear segment from u to v (e.g . by line drawing on Q). Define the intersection
set S(e) = `(e) ∩ F as the set of points of this segment intersecting with the
binary edge map of I. These points are shown as green dots in Fig. 2e. Then, the
weight function w : E → R assigns a weight to e that is equal to the maximum
strength found along S(e):

w(e) = max
p∈S(e)

g(p), e ∈ E. (3)

This weight signifies that vertices u, v will be merged when the strongest edge
fragment between them is removed. Equipped with weight function w, the De-
launay graph becomes a weighted undirected graph.

3.2 Feature detection

To reproduce the effect of edge evolution in scale space, we sort graph edges
e = (u, v) by non-decreasing weight w(e) and then iteratively merge vertices u, v
in the same order. We adopt the merging process used in the graph segmentation
method of Felzenszwalb et al . [12]. Using a structure of disjoint sets, the output
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Detection steps for a yin-yang symbol. (a) detected features; (b) edge map F ;
(c) distance map D; (d) local maxima V ; (e) Delaunay triangulation G. Green dots
correspond to intersecting points (see text); (f) convex hulls (in color).

is a partition of graph G into components. The process is similar to Kruskal
algorithm for minimum spanning trees, with the addition of a merging criterion
controlling the grouping of components. The algorithm decides which edges to
cut by comparing the minimum weight edge connecting two components with
the maximum weight within each component. To avoid over-segmenting, the
algorithm includes a penalty τ(C) = k/|C| on each component C, where |C| is
the order of C and k is a constant. In general, the larger the penalty, the coarser
the resulting partition. Nevertheless, this penalty does not impose a fixed size
limit.

We are not interested in the final partition of the graph here because we
target multiple overlapping regions rather than a disjoint set. Any component
produced during the merging process is a candidate for producing a region. Let
C be the set of all components corresponding to the final partition, and t an
iteration of the merging process. For each C ∈ C, we denote by Ct the instance
of C at iteration t. Apparently, Ct grows larger with increasing iteration until
it is merged into another component. When component Cti is merged into Ctj ,
then Ct+1

j grows to become the union of the two, while Ci stops growing and
remains constant until termination.

Setting a constant scale of observation k, the idea is to define a measure µ(Ct)
of each component C ∈ C at each iteration t and keep track of its evolution during
the process. For instance, Fig. 3a shows the change of µ(Ct) when measure µ is
defined as the compactness of the region shape corresponding to component Ct.
When there is a significant change in the topology of a component, we expect a
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Fig. 3. (a) Indicative distribution of the weights assigned to components. Each color
represents the evolution of a single component and the dark circle indicates the selected
weight; the selected values by black circles, which correspond to the global maxima.
(b) Graph vertices and corresponding intersection points. The orange line is not the
actual convex hull, but a sketch for illustrative purposes.

peak in the corresponding curve. Hence, we choose to select a component Ct if
iteration t corresponds to the maximum peak in its lifetime.

If Ĉ ⊂ C is the subset of selected components, what remains is to construct
an image region R corresponding to each C ∈ Ĉ. The set R of such regions will
be the output of our region detector. To compute the actual spatial extent of a
region, we use the edge fragments surrounding the vertices of the component,
as depicted in Fig. 3b. Given a vertex u ∈ V (C) and an adjacent edge e with a
non-empty intersection set S(e), define the nearest intersection point

n(u, e) = arg min
p∈S(e)

‖p− u‖. (4)

For instance, vertex u and its nearest intersection points are shown in red in
Fig. 3b, while v and its nearest intersection points are shown in green. Then,
given a component C ∈ Ĉ, we collect all its vertices u ∈ V (C) and all their
nearest intersection points to construct its neighborhood

N(C) =
⋃

u∈V (C)

⋃
e∈E(u)

n(u, e). (5)

Referring to Fig. 3b, and since vertices u, v have been merged to one component,
the neighborhood comprises all red and green intersection points. Finally, we
compute the convex hull of all intersecting points, as depicted by the thick
orange line in Fig. 3b and by the colored lines in Fig. 2f, and fit ellipses. All
steps of our region detector are summarized in Algorithm 1.
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Algorithm 1 Distance Transform Detector
1: procedure DTD(image I, regions R)
2: g ← ‖∇Gσ ? I‖ . gradient magnitude at scale σ
3: F ← EdgeMap(I)
4: D ← DistanceTransform(F )
5: V ← LocalMaxima(D)
6: G← DelaunayTriangulation(V )
7: Sort(E,w) . sort edges by non-decreasing weight
8: t← 0
9: C ← V

10: for all e = (u, v) ∈ E(G) do
11: t← t+ 1
12: if w(e) 6 min{ρ(Ct−1(u)), ρ(Ct−1(v)) then . check penalty
13: Ct ← Merge(Ct−1(u), Ct−1(v)) . merge comp. of v into comp. of u
14: ρ(Ct)← w(e) + k/|Ct| . update penalty
15: end if
16: end for
17: R← ∅
18: for all C ∈ C do
19: t← arg maxs(∆µ(Cs)) . iteration where measure change is maximized
20: H ← ConvexHull(N(Ct)) . neighborhood N(C) defined in (5)
21: R← FitEllipse(H)
22: R← R∪R
23: end for
24: return R
25: end procedure

4 Experiments

4.1 Tuning and experimental setup

We first carry out a set on experiments to study the influence of different param-
eters of our detector, hereafter termed as DistDetector. As qualitative parameters
–mainly related to region shape– we identify the weights w of graph edges and
the measure µ related to the evolution of graph components. Although different
choices exist, we use the gradient magnitude g and the shape compactness of
the component. Also, we define penalty τ(C) = k/|C| with k = 0.25 min(r, c)
where r × c is the size of input image I in pixels. As quantitative parameters –
rather related to the trade-off between computational complexity and statistical
performance– we identify the Canny hysteresis thresholds and the density of the
local maxima of EDT. Fig. 4 shows detected regions hysteresis thresholds lower
than those of Fig. 1. Although spurious edges result in more regions, similar
image areas are covered. Fig. 5 shows the performance under four different sam-
pling strategies for EDT local maxima. Overall, we use the “3 × 3” strategy as
default in our experiments, achieving the best trade-off between computational
complexity and performance.
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τl = 0.15, τh = 0.6

Fig. 4. Robustness to hysteresis thresholds. Canny edges for a different set of hysteresis
thresholds than the ones used in Fig. 2b and the corresponding detection results.
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Fig. 5. Comparison of the four methods to extract local maxima. (a) repeatability
score(%); (b) matching score(%).

We then carry out a set of experiments focusing on the benchmarks proposed
of [2] and region interpretability by visual inspection. We evaluate the statistical
performance on image sequences graffiti, boat and leuven, with running time
2s, 3s and 0.8s respectively. Apparently the running time is higher for strongly
textured scenes like boat. Repeatability and matching score results of our detector
are measured against results in [2]. For all other comparisons we use publicly
available implementations with default parameters if not otherwise specified. We
use the SIFT descriptor for all experiments.

4.2 Repeatability and matching score experiments

Figures 6, 7 compare our detector against the state of the art on four perfor-
mance indicators: repeatability, number of correspondences, matching score and
number of correct matches obtained with the Nearest-Neighbor (1-NN) strategy.
As shown in Fig. 6, we obtain higher repeatability scores than all other detec-
tors for the graffiti and matching scores above Hessian-affine. The repeatability
is high for the boat and average for leuven, while the number of detected fea-
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tures is low. On the other hand, the matching score is high for leuven and low
for boat. Overall, DistDetector achieves a good trade-off between performance
and number of features.

This good balance led us to carry out another experiment to comparing the
ratio of correct to false matches of DistDetector, Hessian-Affine and MSER under
two matching strategies, namely NN and similarity threshold (SIM). Both strate-
gies have been used in [25]. Fig. 8 shows results for the graffiti pair (0◦, 30◦). As
expected, DistDetector performs quite well for a small number of total matches
and ranks second after the MSER for the NN strategy. Interestingly enough, it
outperforms both other detectors for approximately the same number of detected
features under the similarity threshold strategy. The Hessian-affine detector with
a small threshold produces a large number of features (2640), but still performs
only slightly better than DistDetector.

Finally, in Fig. 9 we illustrate the qualitative performance of the proposed
detector in feature matching using a set of three different image pairs. We per-
form spatial matching measuring RANSAC inliers after 10 runs. For the well
known graffiti pair (0◦, 50◦), shown in Fig. 9a, we get the following results:
(a) DistDetector (#681 NN-matches, 32 inliers); (b) Hessian-Affine (#2352 NN-
matches, 65 inliers) and (c) MSER (#780 NN-matches, 52 inliers). Fig. 9bc show
inliers for two (non-neighboring) frames of a face sequence and a stereo pair of a
gesture sequence respectively. A human face can be easily detected by its edges.
The edge-based nature of DistDetector fits well with local feature detection from
faces. Indeed we have shown that it does not depend on the quality of edges and
provides a good estimate of feature scale regardless of the initial edge map.

5 Discussion

We have proposed a new feature detector based on single-scale edges. The detec-
tor performs competitively on established evaluation benchmarks and produces
a compact set of interpretable and repeatable features. Visually, the detected
features are more similar to the ones produced by MSER, but exhibit a higher
overlap factor, a wider area coverage. The ability to detect composite regions is
also very important, in contrast to uniform intensity regions of other detectors.
Since all major algorithmic components, namely distance transform, Delaunay
triangulation and merging, are still efficient to compute in 3D, it is straightfor-
ward to extend DistDetector to spatiotemporal data. It is our plan to pursue
this direction and apply the extended detector to action detection using the
framework of our early work [26].
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of correct matches for the graffiti and boat sequences.
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Fig. 7. Repeatability score, number of correspondences, matching score and number
of correct matches for the leuven sequence.
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(c) (d)

Fig. 8. Viewpoint change (Graffiti image pair at 0◦ and at 30◦). Percentage of correct
matches and number of correct matches versus total number of matches for Nearest-
Neighbor (NN) and threshold-based (SIM) matching.
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(a)

(b)

(c)

Fig. 9. RANSAC Inliers for the DistDetector for three different pairs of images. (a)
Graffiti pair (0◦, 50◦); (b) two frames of a moving face sequence; (c) a stereo pair of a
gesture sequence.


