
SymCity: Feature Selection by Symmetry
for Large Scale Image Retrieval

Giorgos Tolias, Yannis Kalantidis and Yannis Avrithis
National Technical University of Athens
Iroon Polytexneiou 9, Zografou, Greece

{gtolias,ykalant,iavr}@image.ntua.gr

ABSTRACT
Many problems, including feature selection, vocabulary learn-
ing, location and landmark recognition, structure from mo-
tion and 3d reconstruction, rely on a learning process that
involves wide-baseline matching on multiple views of the
same object or scene. In practical large scale image retrieval
applications however, most images depict unique views where
this idea does not apply. We exploit self-similaries, symme-
tries and repeating patterns to select features within a single
image. We achieve the same performance compared to the
full feature set with only a small fraction of its index size
on a dataset of unique views of buildings or urban scenes,
in the presence of one million distractors of similar nature.
Our best solution is linear in the number of correspondences,
with practical running times of just a few milliseconds.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—
Search process, selection process; I.4.10 [Image Processing
and Computer Vision]: Image Representation

General Terms
Algorithms and Experimentation

Keywords
feature selection, symmetry detection, self-similarity, index-
ing, image retrieval

1. INTRODUCTION
The bag-of-words (BoW) representation on local features
and descriptors, along with geometry verification, has been
very successful at particular object retrieval [29][25]. At
large scale, the current bottleneck appears to be the memory
footprint of the index rather precision or speed, and it be-
comes even more significant in recent attempts to geometry

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$15.00.

Figure 1: Tentative correspondences using all fea-
tures (top), and selected features (bottom). Feature
selection only applied to the image on the right.

indexing [12]. One solution is to abandon BoW in favor of
more global representations like Fisher kernels [24][13], but
these are not compatible with geometry verification [25][23],
so they cannot reach the same levels of precision yet.

So far, feature selection is probably the only practical al-
ternative. An increasingly popular idea is to select features
from multiple views, identified by a baseline retrieval sys-
tem [32]. Assuming similar images are indeed present in the
dataset at hand, this idea has been successful at other tasks
as well, including vocabulary learning [10][20], location and
landmark recognition [26][9] and 3d reconstruction [1]. In
practice however, most images are unique, in the sense that
they depict a unique view of an object or scene in the dataset
and there is nothing to compare to. Or is there?

We consider exactly such unique images in this work, us-
ing the very same idea: feature selection by self-similarity.
We develop two self-matching alternatives inspired by state-
of-the-art spatial matching methods: fast spatial matching
(FSM) introduced by Philbin et al . [25], and Hough pyramid
matching (HPM), introduced by Tolias and Avrithis [31].
We apply them between each image and either itself or
its reflection, where tentative feature correspondences are
found in the descriptor space, without quantization. In ef-

fect, we detect repeating patterns or local symmetries and
index only the participating features. The underlying mo-
tivation is that features repeating within a single image are
quite likely to repeat across different views as well, hence are
good candidates for a more compact image representation
that does not sacrifice performance.

Though a limiting choice at first sight, we do achieve a
generic method that is successful at least at urban image
collections, where symmetries are inherent. But symmetries
and self-similarities are not limited to man-made structures
like buildings and natural creations like leaves and butter-
flies: when looking at different scales, local symmetries are
everywhere. For instance, Bagon et al . [3] develop a generic
method of segmentation by composition, while Shechtman
and Irani [28] build a generic self-similarity descriptor ; both
methods operate at pixel level.

In the example of Figure 1, the image on the left (right) is
considered a query (database) image, so feature selection is
only applied on the right one. There are plenty of local sym-
metries, giving enough correspondences for matching even
after selection, which also appear ‘cleaner’ in terms of out-
liers. Less than 20% of index space is needed after selection
for this particular image.

On a dataset of one million images, we achieve the same
performance with the full feature set, requiring only a small
fraction of its memory. Alternatively, we outperform crite-
ria like feature scale or strength, with the same amount of
memory. Since unique images have only been treated as dis-
tractors so far, we also build a new annotated dataset with
a large number of small groups of images depicting urban
scenery; one image of each group is in the dataset and rest
are only used as queries.

After a study of related work in section 2, we develop
our main contribution on unique-view feature selection in
section 3. We then present our experiments in section 4 and
discuss our result and future directions in section 5.

2. RELATED WORK
Feature selection has recently become a popular way of re-
ducing index space for image retrieval. This is typically
an application-dependent task, and two of the earliest ap-
proaches have been applied to location recognition. Given a
dense street-view geo-tagged database, Schindler et al . [26]
select informative features, i.e. features occurring mostly in
images of some specific location. Similarly, Li and Kose-
cka [17] obtain an information content probability for each
feature with respect to location identification. Both meth-
ods rank image features accordingly and keep only a specific
subset or percentage of features per image.

Knopp et al . [15] densely compute a local confusion score
for image regions of a geo-tagged database by a sliding win-
dow scheme and remove features inside regions with high
score. Gammeter et al . [9] start from image clusters ex-
tracted by geographical proximity and visual similarity, and
then use feature matching statistics to estimate a bounding
box around the foreground object of each image. Although
they only index features inside this box, most are still kept.
Avrithis et al . [2] further build a scene map from selected
features of aligned views, but the result is a boost in recall
rather than a considerable reduction in index size.

All previous models are supervised, making use of loca-
tion information. Turcot and Lowe [32] on the other hand
have introduced an unsupervised approach to select useful

features. The latter are features appearing as inliers dur-
ing spatial verification, when issuing each database image
as a query to a baseline retrieval system. Naikal et al . [22]
avoid spatial matching or structure from motion and, using a
training set of images per category, apply sparse PCA on the
covariance matrix of the bag-of-words histograms. However,
they work with vocabularies of size only up to 103, making
the solution unsuitable for large scale image retrieval.

Still, all models mentioned so far, including [32], require
multiple views of the same object or scene. For unique im-
ages, Turcot and Lowe [32] keep the largest-scale features in
the index, which is equivalent to reducing image resolution.
In section 4 we show that this approach fails in the presence
of a large scale distractor dataset. In this work we rather de-
tect self-similarities, repeating patterns and symmetries to
select features in a single image. To our knowledge, this is
the first approach of this kind.

Earlier approaches on symmetry detection consider the en-
tire image as a signal and look for one or more axes of sym-
metry globally [30][14]. More recent approaches work on lo-
cal features instead. Tuytelaars et al . [33] begin with invari-
ant neighborhoods and apply cascaded Hough transform to
detect collinear intersections, a solution of high complexity.
Cornelius et al . [7] also use Hough voting but do not require
image descriptors; they detect local affine frames (LAFs)
from an image and its reflection, match them using their
local geometry, and allow each matching LAF pair to vote
for a symmetry axis. Similarly, Loy and Eklundh [19] detect
symmetric local feature constellations via Hough voting, but
feature matching is based again on descriptors.

Lazebnik et al . [16] expand local feature configurations
towards geometrically invariant semi-local parts of 3d ob-
jects. To limit the exponential number of hypotheses, they
apply strong geometric and appearance-based consistency
constraints on the seed configurations. Still, the complex-
ity remains quadratic in the number of correspondences. We
show that local symmetry detection does not amount to more
than any spatial matching scheme, deriving our two solu-
tions by such methods, one being quadratic [25], and the
other linear [31] in the number of correspondences.

Structured and repetitive pattern detection has recently
been applied to image retrieval, but not really for feature
selection. Schindler et al . [27] detect periodic 2d patterns,
matching them to a 3d database of textured facades. Doubek
et al . [8] retrieve buildings by matching only lattice or line
repetitive patterns, representing tiles by specifically tuned
intensity and color descriptors. Both methods lack in gen-
erality. Jegou et al . [11] rather detect repeated visual ele-
ments in a single image to lower the weight of such features
in bag-of-words scoring. Although taking into account this
intra-image burstiness, they still keep all features.

3. FEATURE SELECTION
We introduce here two alternative unsupervised methods for
feature selection, both focusing on geometrically consistent
feature groups within a single image, roughly representing
repeating patterns or local symmetries. The two methods are
developed in sections 3.2 and 3.4. Under both methods, each
image is matched to itself as well as its reflection, handling
direct and opposite transformations, respectively. The two
processes, referred to as direct and flipped matching, are
presented in sections 3.1 and 3.3, respectively. Section 3.1
begins with our general image representation.

The entire method is based on the observation that sym-
metry or repeating pattern detection in a single image does
not differ much from spatial matching between two images.
In fact, we only see two issues requiring attention:

1. Spatial matching usually (but not always) assumes one-
to-one correspondence between features of the two im-
ages. This is exactly why constraints like the ratio
test [18] are usually employed when matching descrip-
tors. This is not the case here because a pattern may
be repeating more than twice.

2. Seeking robustness against ‘outliers’, a single trans-
formation model is usually assumed, e.g . similarity or
homography. This is not the rule, as e.g . HPM [31] can
find multiple transformations. But for every symmetry
or repeating pattern we do need a different transfor-
mation: HPM is more appropriate in this sense, but
we also extend FSM [25] in this direction.

3.1 Representation
We assume that an image is represented by a set of local
features X. Each local feature x ∈ X is associated with
a D-dimensional descriptor d(x) ∈ RD, encoding local ap-
pearance, which is then quantized to visual word w(x) ∈W ,
where W is a given visual vocabulary. Assuming features
are scale and rotation covariant, it is also associated with
position p(x) ∈ R2 on the image plane, log-scale σ(x) ∈ R
and orientation θ(p) ∈ (−π, π]. All this information is con-
veniently represented in vector

g(x) = [p(x)T σ(x) θ(x)]T (1)

in R4, encoding local geometry. Log-scale is employed so
that relative scales are expressed as differences rather than
ratios. Orientation is alternatively represented by orthogo-
nal matrix R(x) ∈ R2×2 with detR(x) = 1. Finally, position
is alternatively represented in homogeneous coordinates by
vector p(x) in projective space P2(R).

A feature correspondence within image X is a pair of fea-
tures c ∈ X2. Given correspondence c = (x, y), it is possi-
ble to define a similarity transformation that aligns features
x, y ∈ X in the image plane. It turns out [31] that this
transformation can also be represented by vector

g(x, y) = g(c) = [p(c)T σ(c) θ(c)]T (2)

in R4, where σ(c) = σ(y) − σ(x), θ(c) = θ(y) − θ(x) are
the relative scale and orientation respectively, and p(c) =
p(y) −M(c)p(x) is the relative position (translation), with
M(c) = σ(c)R(c) and R(c) = R(y)R(x)−1.

It is now is possible to use norm ‖g(x, y)‖ to measure the
geometric proximity of features x, y. It is understood here
that relative orientation θ(y)−θ(x) is first taken to its princi-
pal value in (−π, π]. Because feature detectors often respond
with multiple overlapping features around highly distinctive
regions, we need this proximity measure to exclude nearby
features from our search for symmetries. In particular, we
say (x, y) is a valid pair and write v(x, y) if and only if
‖g(x, y)‖ ≥ ρ, with response threshold ρ > 0. Then, given
image X, we define its set of valid correspondences

Cv(X) = {(x, y) ∈ X2 : v(x, y)}. (3)

This set also excludes trivial correspondences (x, x) of a fea-
ture x with itself, since ‖g(x, x)‖ = 0.

original original

original flipped

Figure 2: (Top) repeating pattern found by direct
matching; magenta: direct selection. (Bottom) sym-
metry found by flipped matching; green: flipped se-
lection, cyan: back-projected selection. (Left) origi-
nal image. (Right) image to match; all features in
black. Continuous line: tentative correspondences;
dashed: back-projection + symmetry axes.

Now, feature correspondences are actually based on ap-
pearance. The simplest way is that of the bag-of-words
model: two features are in correspondence simply when as-
signed the same visual word, which is a vector-quantized ver-
sion of their descriptor. Depending on the method used for
vocabulary construction, quantization may incur significant
information loss [5], and since feature selection is an off-line
process, we choose to work directly in the descriptor space.
In fact, since features are not assigned a visual word before
selection, it is also more efficient to seek neighbors among
the features of X rather than within an entire vocabulary of
typical size 106.

In particular, we define the appearance dissimilarity d(x, y)
of features x, y ∈ X as their distance ‖d(x) − d(y)‖ in the
descriptor space RD. We say that features x, y are similar if
d(x, y) ≤ δ, with similarity threshold δ > 0. Now, given fea-
ture x ∈ X, let its neighborhood N(x) be the set of similar
features that is restricted to the set N k

X(x) of its k-nearest
neighbors in X according to dissimilarity d,

N(x) = {y ∈ X : y ∈ N k
X(x) ∧ d(x, y) ≤ δ}. (4)

We use nearest neighbors to limit the number of correspon-
dences, making the subsequent matching process more effi-
cient; in practice, an approximate nearest neighbor scheme
is used. Then, the set of appearance- or descriptor-based cor-
respondences of image X contains all pairs of x ∈ X with
their neighbors,

Cd(X) = {(x, y) ∈ X2 : y ∈ N(x)}, (5)

Observe that Cd(X) is a relation that is not symmetric in
general. More important, contrary to typical image match-
ing applications, we do not impose any mapping constraint
towards one-to-one correspondence, like the ratio test [18]:
we are seeking repeating patterns and a pattern may be re-
peating more than twice. Definitions (4), (5) allow up to k
repetitions.

Finally, the set of tentative correspondences of X contains
pairs of similar features that are also valid,

Ct(X) = Cd(X) ∩ Cv(X). (6)

All correspondence definitions so far refer to direct match-
ing, and will be modified accordingly for flipped matching in
section 3.3. Direct matching is illustrated in Figure 2(top),
showing a pattern of three features repeating twice while
undergoing a translation. Observe that tentative correspon-
dences, being valid, exclude ones between a feature and itself
in the two images. The two groups of three correspondences
are essentially the same, being of the form (x, y) and (y, x).
However, correspondences are not always symmetric. The
pattern could repeat three times or more, while all similarity
transformations are allowed.

3.2 Spatial self-matching
In order to detect local symmetries or repeating patterns, we
need stronger evidence than just a set of independent corre-
spondences, each based on the similarity of a single pair of
features. We follow two different approaches, both inspired
by existing methods for spatial matching between two differ-
ent images, which however we apply to self-matching within
a single image. Our first approach seeks groups of geomet-
rically verified correspondences, called inliers; it is inspired
by fast spatial matching (FSM) [25].

Given image X, each correspondence c = (x, y) ∈ Ct(X)
gives rise to a similarity transformation represented by vec-
tor g(c) defined in (2). This transformation has four de-
grees of freedom and may as well be represented by a matrix
t(c) ∈ R3×3, with

t(x, y) = t(c) =

[
M(c) p(c)
0T 1

]
. (7)

This alternative formulation is useful when representing po-
sition in homogeneous coordinates. Then, given transforma-
tion h = t(c) = t(x, y), the position p(z) ∈ R3 of z ∈ X is
transformed to hp(z), the latter standing for a matrix-vector
product.

FSM is a RANSAC-like process. Given image X and its
set of tentative correspondences C = Ct(X), each c ∈ C
defines a transformation hypothesis h = t(c) that is veri-
fied by looking for inliers IC(h) among all correspondences
(x, y) ∈ C, with

IC(h) = {(x, y) ∈ C : ‖p(y)− hp(x)‖ < ε} (8)

for h ∈ R3×3. The inlier set relies on inlier threshold ε > 0,
given in pixels. Among all hypotheses t(C) = {t(c) : c ∈ C},
FSM then seeks the hypothesis h ∈ t(C) with the highest
inlier support |IC(h)|. Here is where we differentiate: we
seek the best hypothesis per individual inlier.

In particular, for each correspondence c = (x, y) ∈ C, we
define its set of associated hypotheses HC(c) = HC(x, y) ⊆
t(C) that align c as an inlier,

HC(x, y) = {h ∈ t(C) : ‖p(y)− hp(x)‖ < ε}. (9)

We can now define the inlier strength α(c) of correspondence
c as the largest inlier support |IC(h)| over all its associated
hypotheses h ∈ HC(c),

αC(c) = max{|IC(h)| : h ∈ HC(c)}. (10)

The entire self-matching process is summarized in Al-
gorithm 1, which we will refer to as spatial self-matching

Algorithm 1: Spatial self-matching (SSM)

1 procedure α← SSM(C, t; τα)
input : correspondences C, transformations t
parameter: inlier threshold τα
output : inlier strengths α

2 for c ∈ C do . initialize
3 inlier(c)← false . mark as outlier
4 α(c)← 0 . zero strength

5 for c ∈ C do . for all hypotheses
6 if inlier(c) then continue . skip hypothesis?
7 h← t(c) . current hypothesis
8 I ← IC(h) . current inliers (8)
9 if |I| < τα then continue . verified hypothesis?

10 for c′ ∈ I do . for all inliers
11 inlier(c′)← true . mark as inlier
12 α(c′)← max(α(c′), |I|) . update strength

13 return α . inlier strengths

(SSM). The original algorithm [25] is quadratic in the num-
ber of correspondences, since all correspondences are con-
sidered as inliers to all hypotheses. To speed up the pro-
cess, we skip hypotheses arising from correspondences that
have already been counted as inliers for previous hypotheses
(line 6). We have observed that this does not affect feature
selection in practice. The process is now quadratic only in
the worst case, i.e. when no inliers are found at all, but in
practice we get significant computational savings.

Once all inlier strengths have been computed, the set of
spatially verified correspondences α(C) ⊆ C is

α(C) = {c ∈ C : αC(c) ≥ τα}, (11)

with selection threshold τα > 0. Finally, given image X
with tentative correspondences C = Ct(X), we select those
features x ∈ X that are participating in some verified corre-
spondence in α(C),

αd(X) = π1(α(C)) ∪ π2(α(C)), (12)

where, for i = 1, 2, πi(S) is the i-th projection of binary
relation S ⊆ X1 × X2, collecting the i-th element of all its
pairs,

πi(S) = {xi ∈ Xi : (x1, x2) ∈ S}. (13)

We call αd(X) the direct selection of features in X.

3.3 Flipped matching
So far, we have only considered direct similarity transfor-
mations, that is, hypotheses h with deth > 0. How about
opposite transformations with deth < 0, like reflections? In
fact, once the image is reflected, the patch of each local fea-
ture is reflected as well, and its descriptor is no longer the
same, unless the patch is symmetric itself. So reflecting the
local geometry (1) is not enough: we actually need to re-
flect the entire image and extract a new set of features and
descriptors.

Any opposite transformation will do, and we choose hor-
izontal flipping. Let Y be the local feature set extracted
from the flipped image. We assume each feature y ∈ Y has
a flipped, back-projected counterpart y′. This is the projec-
tion of y on the original image with

g(y′) = [w − p1(y) p2(y) σ(y) π − θ(y)]T, (14)

Figure 3: Top: sample group of inliers found by
SSM on original image, capturing a repeating pat-
tern. Bottom: sample group found by SSM between
original and flipped images, capturing a symmetry.

where w is the image width and pi(y), i = 1, 2 are the coor-
dinates of y on the image plane. No descriptor is available
for those features in the original image before selection.

Correspondences are formed exactly as in self-matching,
but are now defined between features x ∈ X, y ∈ Y of the
original and flipped image respectively. The sets of valid,
appearance-based and tentative correspondences (3), (5), (6)
are modified respectively as

Cv(X,Y) = {(x, y) ∈ X × Y : v(x, y′)}, (15)

Cd(X,Y) = {(x, y) ∈ X × Y : y ∈ N(x)}, (16)

Ct(X,Y) = Cd(X,Y) ∩ Cv(X,Y). (17)

Observe that valid pairs refer to the same image, so we use
the back-projected feature y′ instead of y in (15).

Given the set Cf = Ct(X,Y) of tentative correspondences
between X and Y , the SSM process of section 3.2 remains
identical. Let α(Cf) be the resulting set of spatially verified
correspondences. The second set of features we select, the
flipped selection, contains those features of X that partici-
pate in a verified correspondence in α(Cf) and are nowhere
near any feature in αd(X) that is already selected,

αf (X) = π1(α(Cf)) \v αd(X). (18)

By A \v B we denote those features of A that are valid with
respect to B,

A \v B = {a ∈ A : v(a, b) for all b ∈ B}. (19)

The third set of features, the back-projected selection, con-
tains those features of Y that participate in a verified cor-
respondence. We actually use their back-projected counter-
part in this case, again ignoring ones that are near selected

Figure 4: Initial (left) and selected (right) features
by SSM. Original, flipped and back-projected selec-
tions shown in red, green and blue respectively.

features in αd(X) ∪ αf (X),

α′f (X) = [π2(α(Cf))]′ \v (αd(X) ∪ αf (X)), (20)

where A′ = {y′ : y ∈ A} denotes the back-projection of
feature set A ⊆ Y . It is now time to extract descriptors
from the original image for those selected, back-projected
features. Finally, the complete set of selected features con-
tains the direct, flipped and back-projected selections,

α(X) = αd(X) ∪ αf (X) ∪ α′f (X). (21)

We will just say that α(X) is the set of selected features for
X. They are the only features to be assigned a visual word
and indexed for retrieval.

Flipped matching is illustrated in Figure 2(bottom), show-
ing a pattern of six features that is symmetric with a ver-
tical axis of symmetry. Four of the features (in green) are
detected on the original image, giving the flipped selection,
and four (in black) on the flipped image; the two groups
have two features in common, detected in both images. The
two features that are only detected on the flipped image give
the back-projected selection (in cyan) on the original image.
Apart from this exception, we are showing for each image
only the features that are detected and participating in some
correspondence of the chosen pattern or group.

Figure 3 illustrates SSM matching between an image X
and itself as well as its flipped counterpart Y , detecting a
feature group corresponding to a repeating pattern and a
symmetry, respectively, on a real image. There are a lot
more detected feature groups not shown here. For the same
image, Figure 4 depicts all available original features along
with the three different sets of selections made by SSM, in
particular the direct (αd), flipped (αf) and back-projected
(α′f) selections.

3.4 Relaxed spatial self-matching
Given a set of tentative correspondences C, the spatial self-
matching process of section 3.2 is based on FSM [25] and
is quadratic in the number of correspondences, |C|, in the
worst case. On the other hand, Hough pyramid matching
(HPM) [31] is a recent, relaxed spatial matching method,
which is linear in |C| and is shown to outperform FSM in
spatial re-ranking for image retrieval. HPM is not only faster
by not requiring inlier counting, but also free of any thresh-
old defining what an inlier is, like ε in (8) or (9). Further, it
assigns a strength value to each individual correspondence,

Algorithm 2: Hough pyramid self-matching (HPSM)

1 procedure β ← HPSM(C,L)
input : correspondences C, levels L
output: strengths β

2 begin
3 B ←Partition(L) . partition space in L levels
4 for c ∈ C do β(c)← 0 . initialize strengths
5 HPSM-rec(β,C, L− 1, B) . recurse at top
6 return β/max(β) . normalize

7 procedure HPSM-rec(β,C, `, B)
in/out : strengths β
input : correspondences C, level `, partition map B

8 begin
9 if ` < 0 then return

10 for b ∈ B` do F (b)← ∅ . initialize histogram
11 for c ∈ C do . populate histogram
12 F (q`(c))← F (q`(c)) ∪ c by quantizing

13 for b ∈ B` do
14 F ← F (b) . correspondences in b
15 if |F | < 2 then continue . exclude singles
16 HPSM-rec(β, F, `− 1, B) . recurse down
17 if ` = L− 1 then m← 2 else m← 1
18 for c ∈ F do . update strengths in b
19 β(c)← β(c) + 2−`m|F | as in (22)

reflecting whether it is geometrically consistent with others.
This is accomplished without ever enumerating all pairs of
correspondences.

We consider HPM as the basis for a faster self-matching
alternative for feature selection. Instead of an overall match-
ing score between the image and itself (which would be
pointless), we rather use the individual strength of each cor-
respondence. In this sense, HPM is easier than FSM to
apply to self-matching, since individual strengths are inher-
ent in its matching process. However, there are still a couple
of deviations from [31].

Given a set of tentative correspondences C, either a sub-
set of X2 (self-matching) or X×Y (flipped matching), each
correspondence c = (x, y) ∈ C gives rise to a 4-dof transfor-
mation, which we now represent by transformation param-
eter vector g(c) ∈ R4 given by (2). Seeing these vectors as
points in a 4-dimensional transformation space, the problem
is now to detect regions of high density in this space, other-
wise known as mode seeking. Because the dimensionality is
low, a pyramid matching scheme is an ideal way to linearize
the process by avoiding pairwise interactions. We briefly
discuss this scheme here.

An L-level hierarchical partition of the transformation
space is constructed as a sequence of partitionsB0, . . . , BL−1.
B0 is at the finest (bottom) level, while BL−1 is at the coars-
est (top) level and has a single bin. Each bin in B` is split
into 24 bins in B`+1. A histogram pyramid is then con-
structed by distributing correspondences to bins at all levels
of the hierarchy. Given any bin b, let F (b) = {c ∈ C :
g(c) ∈ b} be the set of correspondences with parameter vec-
tor falling in b, and f(b) = |F (b)| its count, representing the
bin frequency in the histogram.

Correspondences falling into the same bin are grouped,
and we expect to find the most geometrically consistent

Figure 5: Flipped matching with HPSM at L = 5
levels. (Top) correspondences in a single bin at level
0, revealing a symmetric feature group. (Bottom) all
tentative correspondences, with red (yellow) being
the strongest (weakest).

groups in the lower levels of the hierarchy, with larger groups
considered to be more consistent. A single correspondence
gives no matching evidence and cannot form a group, so
the group size of a bin is defined as s(b) = [f(b) − 1]+ =
max(0, f(b) − 1). Let b0 ⊆ . . . ⊆ b` be the sequence of bins
containing a correspondence c up to level `. The strength up
to level ` of each correspondence c ∈ C, reflecting the above
considerations, is given by

β`(c) = s(b0) +
∑̀
i=1

2−i{s(bi)− s(bi−1)}. (22)

The total strength of c collected up to the top level L− 1 is
then simply βL−1(c), which we convert to a relative strength,
normalizing by the maximum strength over all correspon-
dences in C:

β(c) = βL−1(c)/max
a∈C

βL−1(a). (23)

The latter normalization scheme is a deviation from [31],
giving the strongest correspondences a chance to participate
in feature selection, even if they are not strong enough in ab-
solute value. Another deviation is that we do not impose an
one-to-one mapping, since this would contradict detection
of repeating patterns within a single image, as discussed
in section 3.1. The matching process is thus considerably
simplified compared to [31], as summarized in Algorithm 2.
We will refer to the latter as Hough pyramid self-matching
(HPSM). Mapping q` : C → B` appearing in line 12 is used
to quantize a correspondence to a bin of level `. Histogram
representation is sparse and the algorithm remains linear in
|C|. As in [31], strength update in line 19 is equivalent to
the definition given by (22).

Figure 6: Sample images, along with selected features found by HPSM at L = 5 levels, colored as in Figure 4.

Now, replacing α by β, we can use HPSM to find the
verified correspondences β(C) ⊆ C, modifying (10) as

β(C) = {c ∈ C : β(c) ≥ τβ}, (24)

with selection threshold τβ ∈ [0, 1]. Similarly, let β(Cf)
be the verified correspondences after flipped matching with
HPSM. Then the direct (βd), flipped (βf), back-projected
(β′f) and complete (β) feature selections follow exactly as
in sections 3.2, 3.3, simply by substituting β for α in (12),
(18), (20), (21) respectively. We will refer to β(X) just as
the selected set of features for image X in this case.

Figure 5 illustrates flipped matching with HPSM, for the
same image as in Figures 3,4. In this case, there are no
groups of correspondences that are inliers to a single trans-
formation. One may consider the set of correspondences in
a single bin instead; the lower the level, the tighter the fit to
one transformation. Each tentative correspondence is scored
independently according to whether it is geometrically con-
sistent with others. The strongest correspondences are the
ones to be selected.

Figure 6 provides further examples of several images, de-
picting the complete feature selection made by HPSM, in-
cluding the direct (βd), flipped (βf) and back-projected (β′f)
selections. There are plenty of symmetries found despite
perspective projection, with most selected features on the
main foreground object or surface.

4. EXPERIMENTS
In this section we explore the behavior of SSM and HPSM
under different parameter settings and compare their per-
formance and memory usage against the full feature set rep-
resentation on large scale experiments. We also compare the
proposed methods against other feature selection approaches
for single images based on options available from the feature

detector, in particular the feature scale as in [32], and the
feature strength.

4.1 Datasets
We use two datasets, namely the new SymCity dataset and
World Cities1 [31]. SymCity is a dataset of 953 annotated
images from Flickr, split in 299 small groups depicting ur-
ban scenes. From each group, a single image is inserted in
the database, while all other 654 images are only used as
queries. For each query image we then wish to retrieve only
a unique database image, and the precision measurement
actually depends only on its ranked position. The distrac-
tor set of World Cities consists of 2M images from different
cities; we use the first one million as distractors in our ex-
periments, which we shall refer to as the distractor set.

SymCity has been built by a semi-automatic process. We
have followed the method of Avrithis et al . [2] to first create
geo-clusters and then visual clusters of images from 10 cities.
Keeping only clusters of up to 4 images, we have selected
through visual inspection a set of clusters depicting indeed
the same object, building or scene. The 10 cities considered
are different from the ones of the distractor set, ensuring
that depicted scenes do not appear in both sets. We shall
refer to SymCity as the annotated set; sample images are
shown in Figure 7.

4.2 Protocol
We extract SURF [4] features and descriptors for each im-
age and assign them visual words from a generic 100K vo-
cabulary using FLANN [21] and keeping only one nearest
neighbor under Euclidean distance. The vocabulary is con-
structed using approximate k-means (AKM) [25] on an in-
dependent set of 15K images depicting urban scenes.

1http://image.ntua.gr/iva/datasets/wc/

Figure 7: Sample images from the SymCity dataset.

In the feature selection process, descriptor matching for
tentative correspondences is performed with approximate
nearest neighbor search, again using FLANN [21]. Upon
failure of symmetry detection, we add more features based
on detector information. In particular, SSM fails when it
yields no verified hypotheses, while HPSM when it selects
less than τα features, which is again the minimum number
of inliers that would be required to verify a hypothesis. In
either case, we select a percentage λ = 15% of the features
with the highest detector strength.

For retrieval, we build an independent inverted file for
each selected feature set. For each query image we then
retrieve its visual words from the inverted file and rank them
by dot product on `2-normalized BoW histograms and tf-idf
weighting [29].

We measure retrieval performance by mean Average Pre-
cision (mAP) over all queries. In the particular case where
there is only a single image to be retrieved for each query,
the average precision is just the inverse of its rank in the
retrieved list of images. We measure index size by the num-
ber of entries in the inverted index per image, which is the
number of unique visual words per image. For each selec-
tion method, we define memory ratio as the ratio of its index
size to that required by the full feature set, where all features
are kept. The index size of the latter is 635 on average; in
particular, an image has 710 features and 635 unique visual
words on average before selection.

Running time refers to the entire process of feature selec-
tion for one image including both direct and flipped match-
ing for each method, but excluding the time needed to gen-
erate feature correspondences and extract features and de-
scriptors in the flipped image, as well as descriptors for back-
projected features. We use our own C++ implementations
for all methods evaluated and measure times on a 2GHz
quad core processor. In all experiments we perform selec-
tion only on the 299 images of the SymCity dataset ground
truth and index all features of the distractor images. This
is preferred in order to allow a fair comparison to baseline
methods, since all methods are now tested using the same
amount of distractor features.

4.3 Tuning
We first fix similarity threshold (4) δ = 0.1 and SSM in-
lier threshold (8) ε = 7 pixels, which we choose after thor-
ough subjective evaluation by visual inspection of correspon-
dences and selected features. The former is specifically cho-

0.15 0.2 0.25 0.3 0.35

0.45

0.5

0.55

0.10.30.4
0.5

0.6

0.7

0.8

0.9
0.95

0.99

0

4
7

10

15

20

30

40

60

memory ratio

m
A
P

HPSM

SSM

Figure 8: mAP performance of SSM and HPSM for
varying selection thresholds τα and τβ respectively
versus memory ratio in the presence of 100K dis-
tractors, with k = 3 nearest neighbors. Selection
threshold is shown with text labels near markers.

sen for SURF descriptors; the latter is not needed by HPSM.
We also fix L = 5 levels for HPSM, as in [31].

With these settings, we perform further parameter tuning
on the SymCity dataset, using a subset of 100K distractors
from World Cities. In Figure 8 we show mAP and mem-
ory ratio measurements for SSM and HPSM with varying
selection thresholds τα (11) and τβ (24) respectively. Both
methods perform equally for high memory ratio, selecting in
fact all features participating in tentative correspondences.
However, as we become more selective, SSM collapses while
HPSM continues to degrade smoothly.

Figure 9 measures average running time for both methods,
for varying number k of nearest neighbors used for tentative
correspondences in (4). The running time for SSM also de-
pends on selection threshold τα. A lower threshold will allow
more hypotheses to be skipped, degrading performance. The
higher the threshold is, the closer the running time is to that
of FSM [25]. HPSM is 5 to 15 times faster than SSM on av-
erage, so given its higher performance as well, it has a clear
advantage. We choose to continue further tuning and large
scale experiments with HPSM only.

1 2 3 4 5

0

100

200

300

k-nearest neighbors

ru
n
n
in
g
ti
m
e
(m

s)
HPSM

SSM, τα = 4

SSM, τα = 10

SSM, τα = 20

Figure 9: Average running time (ms) for HPSM and
SSM versus k-nearest neighbors for tentative corre-
spondences, where τα is varying for SSM.

k 1 2 3 4 5

τβ = 0.4 0.545 0.566 0.569 0.566 0.568
τβ = 0.6 0.522 0.538 0.550 0.551 0.547
τβ = 0.8 0.484 0.511 0.515 0.524 0.529

Table 1: HPSM mAP performance versus k-nearest
neighbors for varying τβ in the presence of 100K dis-
tractors. Chosen parameters and mAP shown in
boldface.

Table 1 compares HPSM performance for varying num-
ber k of nearest neighbors. Performance almost stabilizes or
even drops with more than 3 neighbors. We therefore choose
k = 3 nearest neighbors for our remaining experiments. We
also choose τβ = 0.4 as default, although there is a further
experiment under varying τβ . The average running time of
HPSM for this setting is 16.2ms. Although feature selec-
tion is an off-line process, its speed is critical when indexing
millions of images. HPSM is particularly efficient, with a
running time that is negligible compared e.g . to feature de-
tection and visual word assignment.

4.4 Comparisons
Working at larger scale, with up to the full 1M distractor set
of World Cities, we compare our selection method to the full
feature set. We also compare to three alternative, simple se-
lection criteria for single images, where in particular a fixed
number of features n is selected, having the highest detector
strength, largest feature scale σ as in [32], or uniformly at
random among the full feature set.

Figure 10 shows mAP performance under varying number
of distractor images. While HPSM selection is, not quite un-
expectedly, outperformed at small scale, it reaches the full
feature set performance at large scale. This may be inter-
preted as keeping a limited amount of information, which
degrades quality when matching e.g. a single image pair, but
which withstands severe distractor noise. An observation of
the two curve slopes at 106 distractors suggests that HPSM

100 101 102 103

0.4

0.6

0.8

distractors (×103)

m
A
P

HPSM

Stregth

Scale

Random

Full

Figure 10: Mean average precision comparison ver-
sus number of distractors, with τβ = 0.4 for HPSM
and a fixed number of features n = 300 for the re-
maining selection criteria.

will actually outperform the full feature set at even larger
scale.

This experiment is carried out with the default selection
threshold τβ = 0.4, which yields an average memory ratio
of 0.31 on the annotated set, corresponding to 284 selected
features per image on average. To allow a fair comparison
to the alternative selection criteria, we select a fixed number
of n = 300 features per image, so that the average memory
ratio is roughly the same. HPSM outperforms all three cri-
teria: interestingly, its performance is near that of the three
criteria at small scale, but gradually shifts towards that of
the full feature set at large scale.

A higher selection threshold τβ would make the process
more selective and decrease memory ratio, at the expense of
lower mAP as well. This is a way to trade off index size for
retrieval quality. Figure 11 shows this trade-off on the full
1M distractor set, revealing that a less selective HPSM can
even outperform the full feature set on mAP for a memory
ratio around 35%. On the other hand, its mAP is in general
well above that of the three alternative criteria for the same
memory ratio, with an overhead of 13% on average.

5. DISCUSSION
It is quite unexpected that symmetry or self-similarity is
a generic feature selection criterion that is able to reach or
possibly outperform the full feature set at large scale. On the
other hand, it is also unexpected that more local criteria like
feature scale or strength do not in fact give much benefit over
random selection. Besides this being the first work to apply
symmetry for feature selection, we have shown that sym-
metry detection is not much different in nature from spatial
matching, so given any advance in one problem it is straight-
forward to apply it to the other. In particular, HPSM is the
first method that is linear in the number of correspondences,
being extremely fast in practice.

Among future directions, soft assignment [6] and geome-
try verification [31] are probably the first one may combine

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

memory ratio

m
A
P

HPSM

Strength

Scale

Random

Full

Figure 11: Mean average precision comparison
against memory ratio for varying τβ , n in the pres-
ence of 1M distractors.

in the retrieval process. It would be more interesting to ex-
tract feature tracks from our single image correspondences
and employ them to find visual synonyms for vocabulary
learning, as [20] does from multiple views. All approaches
are expected to increase performance without any cost on
the index size.

6. REFERENCES
[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and

R. Szeliski. Building Rome in a day. In ICCV, 2009.

[2] Y. Avrithis, Y. Kalantidis, G. Tolias, and E. Spyrou.
Retrieving landmark and non-landmark images from
community photo collections. In ACM Multimedia,
2010.

[3] S. Bagon, O. Boiman, and M. Irani. What is a good
image segment? A unified approach to segment
extraction. In ECCV, 2008.

[4] H. Bay, T. Tuytelaars, and L. Van Gool. SURF:
Speeded up robust features. In ECCV, 2006.

[5] O. Boiman, E. Shechtman, and M. Irani. In defense of
nearest-neighbor based image classification. In CVPR,
2008.

[6] O. Chum, J. Philbin, J. Sivic, M. Isard, and
A. Zisserman. Total recall: Automatic query
expansion with a generative feature model for object
retrieval. In ICCV, 2007.

[7] H. Cornelius, M. Perdoch, J. Matas, and G. Loy.
Efficient symmetry detection using local affine frames.
In ECIA, 2007.

[8] P. Doubek, J. Matas, M. Perdoch, and O. Chum.
Image matching and retrieval by repetitive patterns.
In ICPR, 2010.

[9] S. Gammeter, L. Bossard, T. Quack, and L. V. Gool. I
know what you did last summer: Object-level
auto-annotation of holiday snaps. In ICCV, 2009.

[10] E. Gavves, C. G. M. Snoek, and A. W. M. Smeulders.
Visual synonyms for landmark image retrieval. CVIU,
2012.

[11] H. Jegou, M. Douze, and C. Schmid. On the
burstiness of visual elements. In CVPR, 2009.

[12] H. Jegou, M. Douze, and C. Schmid. Improving
bag-of-features for large scale image search. IJCV,
87(3):316–336, 2010.

[13] H. Jegou, M. Douze, C. Schmid, and P. Perez.
Aggregating local descriptors into a compact image
representation. In CVPR, 2010.

[14] Y. Keller and Y. Shkolnisky. An algebraic approach to
symmetry detection. ICPR, pages 186–189, 2004.

[15] J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing
features in place recognition. In ECCV, 2010.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Semi-local
affine parts for object recognition. In BMVC, 2004.

[17] F. Li and J. Kosecka. Probabilistic location
recognition using reduced feature set. In ICRA, 2006.

[18] D. Lowe. Distinctive image features from
scale-invariant keypoints. IJCV, 60(2):91–110, 2004.

[19] G. Loy and J.-O. Eklundh. Detecting symmetry and
symmetric constellations of features. In ECCV, 2006.

[20] A. Mikulik, M. Perdoch, O. Chum, and J. Matas.
Learning a fine vocabulary. In ECCV, 2010.

[21] M. Muja and D. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
ICCV, 2009.

[22] N. Naikal, A. Yang, and S. Shankar Sastry.
Informative feature selection for object recognition via
sparse pca. In ICCV, 2011.

[23] M. Perdoch, O. Chum, and J. Matas. Efficient
representation of local geometry for large scale object
retrieval. In CVPR, 2009.

[24] F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier.
Large-scale image retrieval with compressed Fisher
vectors. In CVPR, 2010.

[25] J. Philbin, O. Chum, M. Isard, J. Sivic, and
A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In CVPR, 2007.

[26] G. Schindler, M. Brown, and R. Szeliski. City-scale
location recognition. In CVPR, 2007.

[27] G. Schindler, P. Krishnamurthy, R. Lublinerman,
Y. Liu, and F. Dellaert. Detecting and matching
repeated patterns for automatic geo-tagging in urban
environments. In CVPR, 2008.

[28] E. Shechtman and M. Irani. Matching local
self-similarities across images and videos. In CVPR,
2007.

[29] J. Sivic and A. Zisserman. Video Google: A text
retrieval approach to object matching in videos. In
ICCV, pages 1470–1477, 2003.

[30] C. Sun and D. Si. Fast reflectional symmetry detection
using orientation histograms. Real Time Imaging,
5(1):63–74, 1999.

[31] G. Tolias and Y. Avrithis. Speeded-up, relaxed spatial
matching. In ICCV, 2011.

[32] P. Turcot and D. Lowe. Better matching with fewer
features: the selection of useful features in large
database recognition problems. In ICCV, 2009.

[33] T. Tuytelaars, A. Turina, and L. Van Gool.
Noncombinatorial detection of regular repetitions
under perspective skew. PAMI, 2003.

