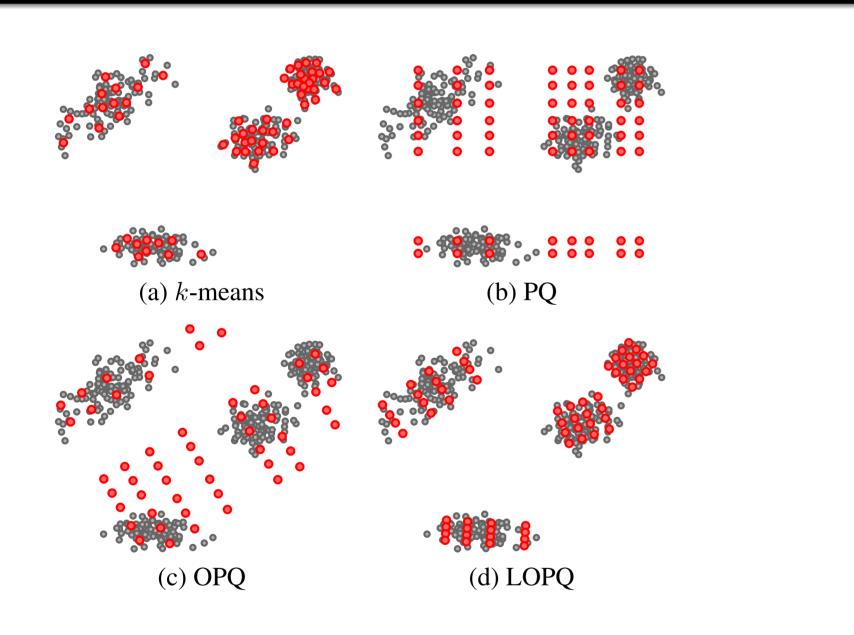


Locally Optimized Product Quantization for Approximate Nearest Neighbor Search

Background

- Vector quantization: Minimize distortion $E = \sum_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} q(\mathbf{x})\|^2$, where quantizer $q: \mathbf{x} \mapsto q(\mathbf{x}) = \arg\min_{\mathbf{c} \in \mathcal{C}} \|\mathbf{x} - \mathbf{c}\|.$
- ▶ **Product quantization** [1]: $C = C^1 \times \cdots \times C^m$, *i.e.*: k^m centroids of the form $\mathbf{c} = (\mathbf{c}^1, \dots, \mathbf{c}^m)$ with each sub-centroid $\mathbf{c}^j \in \mathcal{C}^j$ for $j \in \mathcal{M} = \{1, \dots, m\}$. m independent sub-problems: $q(\mathbf{x}) = (q^1(\mathbf{x}^1), \dots, q^m(\mathbf{x}^m)).$
- ▶ Optimized product quantization [2]: $C = \{R\hat{\mathbf{c}} : \hat{\mathbf{c}} \in C^1 \times \cdots \times C^m, R^T R = I\},\$ where orthogonal $d \times d$ matrix R optimized for subspace decomposition (rotation + permutation).

Overview



Contribution

- **Locality:** Partitioning data in cells with a coarse quantizer of K cells, we *locally* optimize one product quantizer per cell on the residual distribution.
- **Efficient training:** Local distributions are easier to optimize via a simple OPQ variant.
- ▶ Multiple search frameworks: Fits naturally to either a *single* or a *multi-index* [3].
- **Product optimization:** For an n^{th} -order multi-index, we only optimize nK product quantizers for a total of K^n cells.

References

- [1] Jegou et al.. Product quantization for nearest neighbor search. PAMI, 2011. [2] Ge et al.. Optimized product quantization for approximate nearest neighbor search. CVPR, 2013.
- [3] Babenko and Lempitsky. The inverted multi-index. CVPR, 2012.

Project page: http://image.ntua.gr/iva/research/lopq/

Yannis Kalantidis and Yannis Avrithis

National Technical University of Athens

Local Optimization

▶ If Z is the set of residuals of data points quantized to some cell and $|C^j| = k$ for $j \in I$ $\mathcal{M} = \{1, \ldots, m\}$, we locally optimize both space decomposition and sub-quantizers per cell, using OPQ:

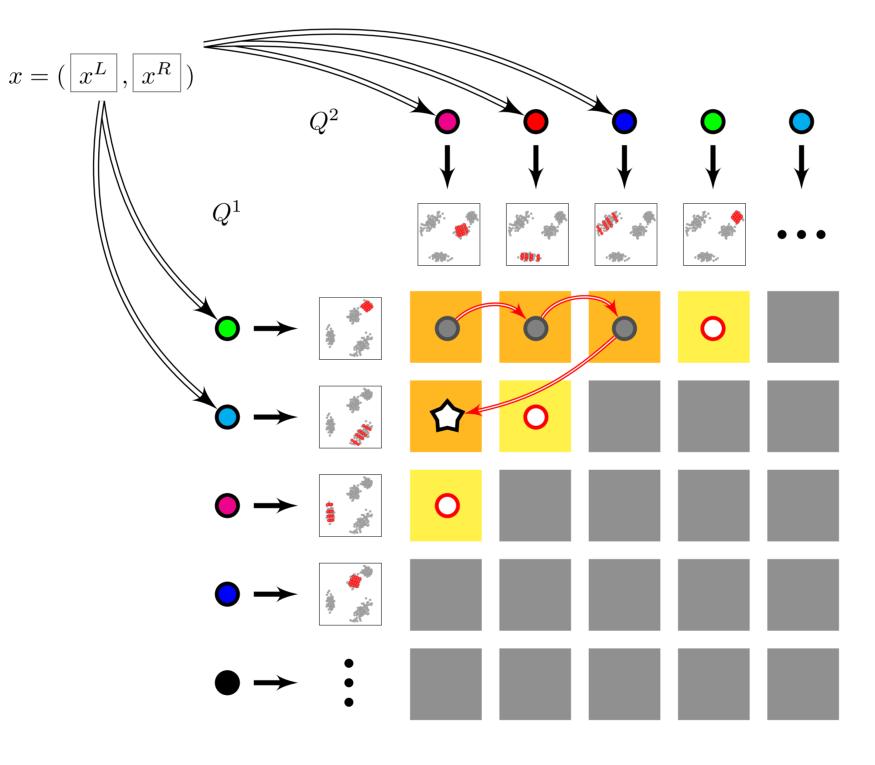
minimize
$$\sum_{\mathbf{z}\in\mathcal{Z}} \min_{\hat{\mathbf{c}}\in\hat{\mathcal{C}}} \|\mathbf{z} - R\hat{\mathbf{c}}\|^{2}$$

subject to $\hat{\mathcal{C}} = \mathcal{C}^{1} \times \cdots \times \mathcal{C}^{m}$
 $R^{T}R = I,$ (1)

Parametric solution: Assuming a normal distribution, minimize the theoretical lower distortion bound as a function of R alone via PCA alignment and *eigenvalue allocation*. Sub-quantizer optimization follows as in PQ.

▶ Residual distributions are closer to normal, so parametric solution fits better to LOPQ.

Multi-LOPQ

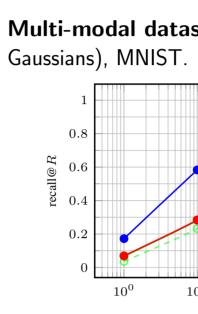


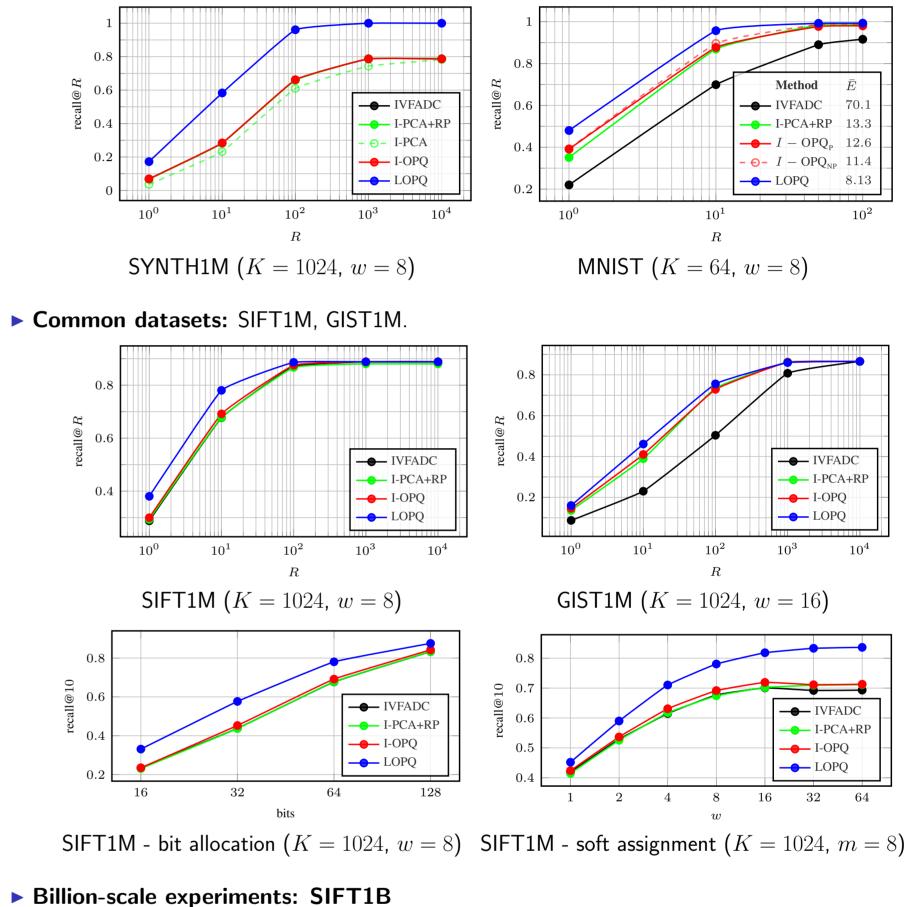
Indexing and Search

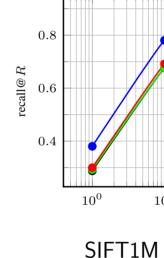
Single index: For each of K cells, residual is individually rotated and encoded. The query point is soft-assigned to its w nearest cells. Asymmetric distances are computed exhaustively via lookup tables.

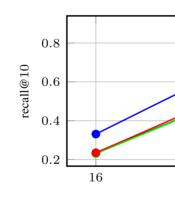
Multi-index: Two subspace quantizers Q^1, Q^2 of K centroids each are built. Residuals are encoded per row and column: 2K local rotations and sub-quantizers for a total of K^2 cells. Search follows *multi-sequence* algorithm, with lazy evaluation of row/columnrotated query residuals.

Experiments









	Method	R = 1	10	100
	Multi-I-Hashing [16]	-	_	
	KLSH-ADC [17]	-	-	0.894
	Joint-ADC [19]	-	_	0.938
20K	IVFADC+R [13]	0.262	0.701	0.962
	LOPQ+R	0.350	0.820	0.978
10K	Multi-D-ADC [3]	0.304	0.665	0.740
	OMulti-D-OADC [8]	0.345	0.725	0.794
	Multi-LOPQ	0.430	0.761	0.782
30K	Multi-D-ADC [3]	0.328	0.757	0.885
	OMulti-D-OADC [8]	0.366	0.807	0.913
	Multi-LOPQ	0.463	0.865	0.905
100K	Multi-D-ADC [3]	0.334	0.793	0.959
	OMulti-D-OADC [8]	0.373	0.841	0.973
	Multi-LOPQ	0.476	0.919	0.973
IFT1B	with 128 -bit codes	and K	$= 2^{13}$	= 819
	$K = 2^{14}$) for single in			

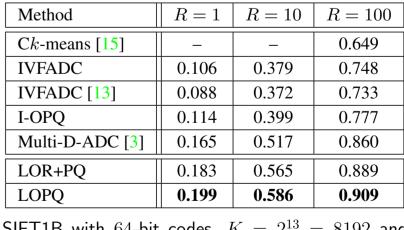
- 30K, 100K.

Protocol: We measure Recall@R, we set k = 256 in all cases and m = 8 unless otherwise stated. **Multi-modal datasets:** SYNTH1M (synthetic, 1M 128-dimensional vectors from 1K anisotropic

Overhead on top of IVFADC (resp. Multi-D-ADC):

Space: Kd^2 (resp. $2K(d/2)^2$) for rotation matrices, *i.e.* around 500MB on SIFT1B and Kdkfor sub-quantizers, *i.e.* 2GB on top of 21GB for SIFT1B.

• Query time: The time needed to rotate the query for each soft-assigned cell (row/column). Average overhead on SIFT1B for Multi-LOPQ is 0.776, 1.92, 4.04ms respectively for T = 10K,



SIFT1B with 64-bit codes. $K = 2^{13}$ = 8192 and w = 64. For Multi-D-ADC, $K = 2^{14}$ and T = 100K

Contact: {ykalant, iavr}@image.ntua.gr