
Mean Shift Analysis and ApplicationsDorin Comaniciu Peter MeerDepartment of Electrical and Computer EngineeringRutgers University, Piscataway, NJ 08854-8058, USAfcomanici, meerg@caip.rutgers.eduAbstractA nonparametric estimator of density gradient, themean shift, is employed in the joint, spatial-range(value) domain of gray level and color images for dis-continuity preserving �ltering and image segmentation.Properties of the mean shift are reviewed and its con-vergence on lattices is proven. The proposed �lteringmethod associates with each pixel in the image the clos-est local mode in the density distribution of the jointdomain. Segmentation into a piecewise constant struc-ture requires only one more step, fusion of the regionsassociated with nearby modes. The proposed techniquehas two parameters controlling the resolution in thespatial and range domains. Since convergence is guar-anteed, the technique does not require the interventionof the user to stop the �ltering at the desired imagequality. Several examples, for gray and color images,show the versatility of the method and compare fa-vorably with results described in the literature for thesame images.1 IntroductionLow level computer vision tasks are misleadingly dif-�cult and often yield unreliable results, since the em-ployed techniques rely upon the correct choice by theuser of the tuning parameter values. Today, it is an ac-cepted fact in the vision community that the executionof low level tasks should be task driven, i.e., supportedby independent high level information. To be able tosuccessfully complement this paradigm, the low-leveltechniques must become more autonomous. In this pa-per we propose such a technique for image smoothingand for segmentation.The mean shift estimate of the gradient of a den-sity function and the associated iterative procedure ofmode seeking have been developed by Fukunaga andHostetler in [7]. Only recently, however, the nice prop-erties of data compaction and dimensionality reductionof the mean shift have been exploited in low level com-puter vision tasks (e.g., color space analysis [4], facetracking [1]).In this paper we describe a new application based onthe theoretical results obtained in [5]. We show thathigh quality edge preserving �ltering and image seg-mentation can be obtained by applying the mean shiftin the combined spatial-range domain. The methods

we developed are conceptually very simple being basedon the same idea of iteratively shifting a �xed size win-dow to the average of the data points within. Detailsin the image are preserved due to the nonparametriccharacter of the analysis which does not assume a prioriany particular structure for the data.The paper is organized as follows. Section 2 dis-cusses the estimation of the density gradient and de-�nes the mean shift vector. The convergence of themean shift procedure is proven in Section 3 for discretedata. Section 4 de�nes the processing principle in thejoint spatial-range domain. Mean shift �ltering is ex-plained and �ltering examples are given in Section 5.The proposed mean shift segmentation is introducedand analyzed in Section 6.2 Density Gradient EstimationLet fxigi=1:::n be an arbitrary set of n points in thed-dimensional Euclidean space Rd. The multivariatekernel density estimate obtained with kernel K(x) andwindow radius h, computed in the point x is de�ned as[13, p.76] f̂(x) = 1nhd nXi=1K �x� xih � : (1)The optimum kernel yielding minimum mean inte-grated square error (MISE) is the Epanechnikov kernelKE(x) = � 12c�1d (d+ 2)(1� xTx) if xTx < 10 otherwise (2)where cd is the volume of the unit d-dimensional sphere[13, p.76].The use of a di�erentiable kernel allows to de�ne theestimate of the density gradient as the gradient of thekernel density estimate (1)r̂f(x) � rf̂(x) = 1nhd nXi=1rK �x� xih � : (3)Conditions on the kernel K(x) and the window radiush to guarantee asymptotic unbiasedness, mean-squareconsistency, and uniform consistency are derived in [7].For the Epanechnikov kernel (2) the density gradientestimate (3) becomesr̂f(x) = 1n(hdcd) d+ 2h2 Xxi2Sh(x) [xi � x]1



= nxn(hdcd) d+ 2h2 0@ 1nx Xxi2Sh(x) [xi � x]1A (4)where the region Sh(x) is a hypersphere of radius hhaving the volume hdcd, centered on x, and containingnx data points. The last term in (4)Mh(x) � 1nx Xxi2Sh(x) [xi � x] = 1nx Xxi2Sh(x)xi�x (5)is called the sample mean shift. Using a kernel di�er-ent from the Epanechnikov kernel results in a weightedmean computation in (5).The quantity nxn(hdcd) is the kernel density estimatef̂(x) computed with the hypersphere Sh(x) (the uni-form kernel), and thus we can write (4) asr̂f(x) = f̂(x)d+ 2h2 Mh(x); (6)which yields Mh(x) = h2d+ 2 r̂f(x)f̂(x) : (7)The expression (7) was �rst derived in [7] and showsthat an estimate of the normalized gradient can be ob-tained by computing the sample mean shift in a uni-form kernel centered on x. The mean shift vector hasthe direction of the gradient of the density estimate atx when this estimate is obtained with the Epanech-nikov kernel.Since the mean shift vector always points towardsthe direction of the maximum increase in the density,it can de�ne a path leading to a local density maximum,i.e., to a mode of the density (Figure 1).The mean shift procedure, obtained by successive� computation of the mean shift vector Mh(x)� translation of the window Sh(x) by Mh(x),is guaranteed to converge, as it will be shown in thenext section.3 ConvergenceLet fykgk=1;2::: denote the sequence of successivelocations of the mean shift procedure. By de�nitionwe have for each k=1,2. . .yk+1 = 1nk Xxi2Sh(yk)xi; (8)where y1 is the center of the initial window and nkis the number of points falling in the window Sh(yk)centered on yk.
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Figure 1: Successive computations of the mean shiftde�ne a path leading to a local density maximum.The convergence of the mean shift has been justi�edas a consequence of relation (7), (see [2]). However,while it is true that the mean shift vector Mh(x) hasthe direction of the gradient of the density estimate atx, it is not apparent that the density estimate at loca-tions fykgk=1;2::: is a monotonic increasing sequence.Moving in the direction of the gradient guarantees hillclimbing only for in�nitesimal steps. The following the-orem asserts the convergence for discrete data.Theorem 1 Let f̂E = nf̂k(yk;KE)ok=1;2::: be the se-quence of density estimates obtained using Epanech-nikov kernel and computed in the points fykgk=1;2:::de�ned by the successive locations of the mean shiftprocedure with uniform kernel. The sequence is con-vergent.Proof Since the data set fxigi=1:::n has �nite car-dinality n, the sequence f̂E is bounded. Moreover, wewill show that f̂E is strictly monotonic increasing, i.e.,if yk 6= yk+1 then f̂E(k) < f̂E(k+1), for all k = 1; 2 : : :.Let nk, n0k, and n00k with nk = n0k + n00k be the num-ber of data points falling in the d-dimensional windows(Figure 2) Sh(yk), Sh0(yk) = Sh(yk) � Sh00(yk), andSh00(yk) = Sh(yk)TSh(yk+1).Without loss of generality we can assume the originlocated at yk. Using the de�nition of the density esti-mate (1) with the Epanechnikov kernel (2) and notingthat kyk � xik2 = kxik2 we havef̂E(k) = f̂k(yk;KE)= 1nhd Xxi2Sh(yk)KE �yk � xih �= d+ 22n(hdcd) Xxi2Sh(yk)�1� kxik2h2 � : (9)Since the kernel KE is nonnegative we also havef̂E(k + 1) = f̂k+1(yk+1;KE) �2



Figure 2: The d-dimensional windows used in the proofof convergence: Sh(yk), Sh0(yk), and Sh00(yk). Thepoint yk+1 is the mean of the data points falling inSh(yk).� 1nhd Xxi2S00h (yk)KE �yk+1 � xih �= d+ 22n(hdcd) Xxi2S00h (yk)�1� kyk+1 � xik2h2 � : (10)Hence, knowing that n0k = nk � n00k we obtainf̂E(k + 1)� f̂E(k) � d+ 22n(hdcd)h2264 Xxi2Sh(yk) kxik2 �Xxi2S00h (yk)kyk+1 � xik2� n0kh2375 ; (11)where the last term appears due to the di�erent sum-mation boundaries.Also, by de�nition kyk+1 � xik2 � h2 for all xi 2S0h(yk), which implies thatXxi2S0h(yk) kyk+1 � xik2 � n0kh2: (12)Finally, employing (12) in (11) and using (8) we ob-tain̂fE(k + 1)� f̂E(k) � d+ 22n(hdcd)h224 Xxi2Sh(yk) kxik2 �Xxi2Sh(yk) kyk+1 � xik235= d+ 22n(hdcd)h2 242yTk+1 Xxi2Sh(yk)xi � nkkyk+1k235= d+ 22n(hdcd)h2nkkyk+1k2: (13)The last item of the relation (13) is strictly positiveexcept when yk = yk+1 = 0.

Being bounded and strictly monotonic increasing,the sequence f̂E is convergent. Note that if yk = yk+1then yk is the limit of f̂E, i.e., yk is the �xed point ofthe mean shift procedure.4 Processing in Spatial-Range DomainAn image is typically represented as a 2-dimensionallattice of r-dimensional vectors (pixels), where r is 1 inthe gray level case, 3 for color images, or r > 3 in themultispectral case. The space of the lattice is known asthe spatial domain while the gray level, color, or spec-tral information is represented in the range domain.However, after a proper normalization with �s and �r ,global parameters in the spatial and range domains,the location and range vectors can be concatenated toobtain a spatial-range domain of dimension d = r + 2.The main novelty of this paper is to apply the meanshift procedure for the data points in the joint spatial-range domain. Each data point becomes associated toa point of convergence which represents the local modeof the density in the d-dimensional space. The process,having the parameters �s and �r, takes into account si-multaneously both the spatial and range information.A similar idea was exploited di�erently in [16]. In Sec-tion 5.4 we will compare the two approaches.The output of the mean shift �lter for an image pixelis de�ned as the range information carried by the pointof convergence. This process achieves a high qual-ity, discontinuity preserving spatial �ltering. For thesegmentation task, the convergence points su�cientlyclose in the joint domain are fused to obtain the homo-geneous regions in the image.The proposed spatial-range �ltering and segmenta-tion are described in the sequel with results shown forboth gray level and color images. The perceptuallyuniform L*u*v* space has been used to represent thecolor information, while for the gray level cases onlythe L* component has been considered.5 FilteringLet fxjgj=1:::n and fzjgj=1:::n be the d-dimensionaloriginal and �ltered image points in the spatial-rangedomain. The upperscripts s and r will denote the spa-tial and range parts of the vectors, respectively. Theoriginal data is assumed to be normalized with �s forthe spatial part and �r for the range.Mean Shift FilteringFor each j = 1 : : : n1. Initialize k = 1 and yk = xj .2. Compute yk+1 = 1nk Pxi2S1(yk) xi, k  k + 1till convergence.3. Assign zj = (xsj ;yrconv).3



The last assignment speci�es that the �ltered dataat the spatial location of xj will have the range compo-nents of the point of convergence yconv. The number ofpoints in the window S1(yk) of radius 1 and centeredon Yk is nk. The unit radius of the window is due tothe normalization.5.1 Arithmetic ComplexityIn a practical implementation the lattice structureof the spatial domain is used for the e�cient search ofthe points xi 2 S1(yk). This search can obviously belimited to a rectangular window of size 2 � 2 in thenormalized space, which corresponds to (2b�sc + 1)2image pixels, where b�c is the down-rounded integer.By denoting with kc the mean number of iterationsneeded for convergence, the arithmetic complexity ofthe mean shift �ltering is about kc(2b�sc + 1)2 
opsper image pixel.5.2 Normalization ConstantsThe value of �s is related to the spatial resolutionof the analysis while the value of �r de�nes the range(color) resolution.An asymptotically optimal (in the MISE sense) gra-dient estimate is obtained when the distribution in thejoint space is normal. The radius of the searching win-dow is a function of the number of data points n [12,p.152]. In our case, however, the data is far from be-ing normal. Therefore, no theoretical constraints canbe imposed on the values of �s and �r, which are taskdependent and in practical settings their choice shouldincorporate a top-down, knowledge driven component.A challenging issue not considered in this paper isthe adaptive de�nition of the normalization constants.To take into account the nonstationarity of the inputadaptive kernel estimation techniques were proposedin the statistical literature [15], however for less com-plex data. Beside exploiting a priori information (oftenavailable for low level vision) robust image understand-ing methods can also be helpful.5.3 ExperimentsMean shift �ltering with (�s; �r) = (8; 4) has beenapplied to the often used 256 � 256 gray level cam-eraman image (Figure 3a), the processed image beingshown in Figure 3b. The regions containing the grass�eld have been almost completely smoothed while de-tails such as the tripod and the buildings in the back-ground were preserved.The entire processing time was a few seconds on astandard laptop with a 233 MHz Pentium II processor.We used a Java implementation of the algorithm. Themean number of iterations necessary for convergence

(a)

(b)Figure 3: Cameraman image. (a) Original. (b) Meanshift �ltered (�s; �r) = (8; 4).was very low, around 3, due to the relatively smallnumber of data points falling in the searching window.To illustrate the e�ectiveness of the �ltering pro-cess, the region marked in Figure 3a is represented inthree dimensions in Figure 4a. In Figure 4b the meanshift paths associated with each pixel from the centralplateau and the line are shown. Note that the conver-gence points (black dots) are situated in the oppositedirection relative to the edge, while the shifts on theline remain on it. As a result, the �ltered data (Fig-ure 4c) shows clean quasi-homogeneous regions.A second �ltering example is given in Figure 5b.The original, 512 � 512 color image baboon has beenprocessed with a mean shift �lter having (�s; �r) =(16; 16). While the texture of the fur has been cleaned,4



(a) (b)
(c) (d)Figure 4: A 40�20 window from the image cameraman.(a) Original data (rotated and 
ipped over for better vi-sualization). (b) Mean shift paths for the points in thecentral and top (white) plateaus. (c) Filtering result(�s; �r) = (8; 4). (d) Segmentation result (see Section 6for details).the details of the eyes and the whiskers remained crisp.5.4 Comparison to Bilateral FilteringWe note here two important di�erences between themean shift and bilateral �ltering proposed by Tomasiand Manduchi [16]. Both methods are based on thesame principle, the simultaneous processing of both thespatial and range domains. However, while the bilat-eral �ltering uses a static window in the two domains,the mean shift window is dynamic, moving in the direc-tion of the maximum increase in the density gradient.Therefore, the mean shift �ltering has a more powerfuladaptation to the local structure of the data.In addition, the �ltering iterations proposed in [16]do not have a stopping criterion. After a su�cientnumber of iterations, the processed image collapses toa 
at surface. The same observation is valid for otheradaptive smoothing techniques [10, 11]. The processde�ned by mean shift is run till convergence and main-tains the structure of the data.6 SegmentationThe mean shift segmentation in the spatial-rangedomain has the same simple design as the �ltering pro-cess. Again, we assume the input data to be normal-ized with (�s; �r). Let fxjgj=1:::n be the original im-age points, fzjgj=1:::n the points of convergence, and

(a)

(b)Figure 5: Baboon image. (a) Original. (b) Mean shift�ltered (�s; �r) = (16; 16).fLjgj=1:::n a set of labels (scalars).Mean Shift Segmentation1. For each j = 1 : : : n run the mean shift procedurefor xj and store the convergence point in zj .2. Identify clusters fCpgp=1:::m of convergence pointsby linking together all zj which are closer than 0:5from each other in the joint domain.3. For each j = 1 : : : n assign Lj = fp j zj 2 Cpg.4. Optional: Eliminate spatial regions smaller thanM pixels.The �rst step of the segmentation is a �lteringprocess. However all the information about the d-dimensional convergence point is stored now in zj , not5



only its range part. Note also that the number of clus-ters m is controlled by the parameters (�s; �r).The arithmetic complexity of the segmentation issimilar to that of the mean shift �ltering, its �rst stepbeing the most computationally expensive.6.1 ExperimentsWe employed the algorithm described above with(�s; �r;M) = (8; 7; 20) to segment the 256� 256 graylevel image MIT (Figure 6a). The segmentation is pre-sented in Figure 6b with the associated contours inFigure 6c. A number of 225 homogeneous regions wereidenti�ed. The high quality contours allow the delin-eation of the walls, sky, steps, inscription on the build-ing, etc.Compare the segmentation in Figure 6 with the seg-mentations of the same image through clustering [4,Figure 4] or using Gibbs random �eld [9, Figure 7].Returning to the cameraman image, Figure 7 showsthe reconstructed image after the regions correspond-ing to the sky and grass were replaced with white.Observe the preservation of the details. The meanshift segmentation has been applied with (�s; �r;M) =(8; 4; 10). Figure 4d shows the segmentation (with thesame parameters) of the selected rectangular windowin Figure 3a.The segmentation with (�s; �r;M) = (16; 7; 40) ofthe 512� 512 color image lake is shown in Figure 8b.Compare this result with that of the multiscale ap-proach in [14, Figure 11]. Finally, one can comparethe contours of the color image hand presented in Fig-ure 9 with those from [17, Figure 15] obtained througha complex global optimization.6.2 DiscussionIt is interesting to contrast the mean shift segmen-tation with those based on the attraction force �eld[14] and edge 
ow propagation [8]. While all the threemethods employ a vector �eld to detect regions in thespatial domain, only the mean shift based segmenta-tion has strong statistical foundations. Our methodassociates the current pixel with a mode of the densitylocated in its neighborhood (measured in both spatialand range domains).The attraction force �eld de�ned in [14] is computedat each pixel as a vector sum of pairwise a�nities be-tween the current pixel and all other pixels. No theo-retical evidence of the existence of such a force �eld isgiven.The edge 
ow in [8] is obtained at each locationfor a given set of directions as the magnitude of thegradient of a smoothed image. The quantization of theedge 
ow direction, however, may introduce artifacts.

(a)

(b)

(c)Figure 6: MIT image. (a) Original. (b) Segmented(�s; �r;M) = (8; 7; 20). (c) Contours.6



Figure 7: Segmentation with (�s; �r;M) = (8; 4; 10)and reconstruction of the cameraman image after theelimination of regions representing sky and grass.Recall that, by contrast, the direction of the mean shiftis dictated solely by the data.7 ConclusionsThis paper suggests that e�ective image analysis canbe implemented based on the mean shift procedure.The nonparametric estimation of the density gradientin the spatial-range domain is a useful tool for bottom-up computer vision tasks such as edge preserving �lter-ing and segmentation. The methods we proposed canbe easily extended to the processing of other low levelimage features like the texture or optical 
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(b)Figure 8: Lake image. (a) Original. (b) Segmented(�s; �r;M) = (16; 7; 40).
(a) (b)Figure 9: Hand image. (a) Original. (b) Contours(�s; �r;M) = (16; 19; 40).7
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