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ABSTRACT 
 
In this work, we propose a design for a user attention model 
featuring three core components. Our system components 
can work in real-time, offering indications of user attention 
from different sensory inputs (both visual and 
neurophysiological). Intention of the current work is to keep 
the equipment as unintrusive as possible, while keeping the 
confidence of the inputs as high as possible. We discuss 
potential applications of such a system, particularly with 
respect to evaluating user attentive behaviour during 
human-agent interactions and as a more natural interface for 
interacting with agents. 
 

1. INTRODUCTION 
 
In this paper, we propose a system for modelling user 
attention during real-time human-agent interactions. The 
three components of the proposed work consist of a gaze 
detector based on standard web-camera input, detection of 
attention using neurophysiological signals, and a user 
attention module for interpreting and representing attention 
paid by a user to a scene over a time period, representing 
where, to what degree and when the user is and has been 
attending to the scene. The user attention model has the 
potential be used for enhancing interactions with an 
Embodied Conversational Agent, or ECA, in two ways: first 
of all, for evaluating human behaviour during human-agent 
interactions, and secondly for acting as an interface enabling 
interactions.  

Following a description of background work in Section 
2, more details of each of the three core components and an 
overview of the integrated system are presented in Section 
3. We describe a prototype scenario in Section 4 and discuss 
possible implications of the use of these components for 
HCI in Section 5. 
 

2. BACKGROUND 
 
Brain Computer Interfaces (BCI) constitute an emerging 
field of research. This paper considers sensor-based BCI 
that measure and interpret brain activity as a means to 
interact with computers. Sophisticated BCI, such as MEG, 

NIRS, PET and fMRI, have been identified as unsuitable for 
real–time, human-computer interaction [1] due to their 
intrusiveness and bulkiness. Portable, real-time, bio-
recording BCI (mainly EEG-based technology) have 
become a topic of research interest both as a means for 
obtaining user input and studying responses to stimuli. For 
example, EEG biofeedback is being investigated as a tool to 
aid individuals with learning difficulties [2]. Another 
approach consists of identifying brain activation patterns 
associated to functional tasks, such as walking or moving an 
arm, to translate them into computer commands. This 
approach has the potential to provide communication 
mechanisms to control interactions in virtual environments 
[3] or wheelchair control for individuals with a degree of 
paralyses [4]. 

Numerous approaches have been proposed for the 
estimation of head pose and eye gaze, requiring different 
types of equipment. The method reported in [5], for 
example, uses specialised hardware for estimating the focus 
of attention. Employing pure image/video processing 
techniques, based on single-camera systems, without the 
need for calibration tends to be easier to develop, but such 
systems require more constraints in terms of lighting and 
user behaviour for robust use. A typical image analysis 
based technique is reported in [6]. 

In work concerning eye-gaze for interaction with 
conversational agents, some approaches have cast the ECA 
in the primarily role of a listener, for example, as a SAL, or 
sensitive artificial listener [7], providing feedback to a user. 
Attentive presentation agents [8] use eye gaze to alter the 
ongoing behaviour of embodied agents in real-time. In a 
similar vein, [9] and [10] have been investigating systems 
for estimating user engagement based on gaze behaviour 
during interaction with a conversational agent. Unlike 
previous work, we are considering the use of 
neurophysiological measurements of attention in 
conjunction with gaze behaviour for managing engagement 
during interaction scenarios. 

 
3. CORE COMPONENTS 

 
The three core components consist of a gaze detector 

(Section 3.1), neurophysiological detection (Section 3.2) 



and a user attention representation module for storing, 
integrating and interpreting attention paid by a user to a 
scene over a time period (Section 3.3). 

 
3.1. Gaze Behaviour 

 
This is concerned with the detection and tracking of 

facial feature points in order to establish the user’s gaze 
direction, encoded as head pose and eye gaze vectors (see 
Fig. 1). 

 
3.1.1. Facial Points Detection and Tracking 
 

Our method for detecting user gaze relies on video 
processing techniques, using a variant of the method 
described in [11]. A web-camera is the only specialised 
hardware necessary for the system to operate. At start-up, it 
is necessary to detect the user’s face and facial features in 
order to proceed with tracking and further analysis. Apart 
from the facial points detected in [11], our system also 
detects the upper and lower point of the mouth, as well as 
the point between the nostrils and two points on each 
eyebrow. Eyebrows and nostrils are detected as the darkest 
regions in a neighbourhood defined by features already 
detected: For eyebrow detection, an area is expanded above 
each eye corner, and the vertical projection of its luminance 
values is calculated. The position of each eyebrow point is 
considered as the row that corresponds to the lowest 
projection on the vertical axis. The vertical position of the 
nostrils is found in a similar way. A three-pyramid Lukas-
Kanade algorithm is employed for tracking the detected 
facial features, while models of natural human motion allow 
recovery from erroneous tracking, as will be discussed later 
in this Section. 

 
3.1.2. Gaze Direction Detection 

 
Head pose is estimated using the translation of the point 

in the middle of the inter-ocular line. The fraction of the 
inter-ocular distance with the vertical distance between eyes 
and mouth is monitored. If maintained within certain limits, 
the translation of the point between the eyes is considered to 
be due to translational movements of the head, and not 
rotational. When the above differs significantly with respect 
to the frontal pose, the translation of the point between the 
eyes is calculated in pixels to its position when the user was 
turned frontally. This translation, normalised with the inter-
ocular distance at start-up to cater for scale variations, is the 
head pose vector. In cases where one of the two eye trackers 
provides incorrect information due to large head rotations, 
the head pose vector reduces in length when the user 
reassumes a frontal position, but does not reach zero. When 
this occurs, the system must reinitialise in order to detect the 
face once again: If the user is oriented frontally, the system 
will restart successfully.  

 
 

Fig. 1. Gaze direction detection. Here, the white line represents the 
head pose vector and the black line the eye gaze vector. Black dots 

are tracked feature points. 
 
Assuming an orthographic projection, all features would be 
considered to shift in a similar way. Finding outliers from 
this uniformity and placing them at their expected positions 
aids in the recovery from erroneous tracking, but requires 
the use of many features in our algorithm. Eye gaze is 
calculated based on the translation of the eye centres in 
relation to the four points defining the eye corners and 
eyelids. Averaging these measurements for both eyes and 
normalising with the inter-ocular distance produces the eye 
gaze vector.  

Operationally, the system requires the user to face the 
camera frontally at start-up. The user can then move freely 
while our video processing techniques track the movements 
in order to calculate the head pose and eye gaze vectors. 
The method works in real-time: Feature tracking requires 
13msec per frame on average for an input video of 
resolution 288x352 pixels, using a Pentium 4 CPU running 
at 2.80GHz. A reinitialisation requires 330ms to resume 
proper operation when it occurs. 

 
3.2. Neurophysiological Data 
 

Another core component in our toolkit for attention 
modelling is a neurophysiological detection component. We 
are currently investigating the use of EEG, using the 
NeuroSky sensor, as a complement to the gaze behaviour 
component described in Section 3.1. NeuroSky is a non-
invasive, dry bio-sensor that detects electrical neuron-
triggered activity to determine states of attention and 
meditation based on the interpretation of alpha and beta 
brain waves through EEG. NeuroSky operates at 1Hz via a 
single electrode and signal-processing unit in a headband 
arrangement. It is used as a headset with three sensors 
touching the skin at three locations: beneath the ears and the 
forehead. The electrical signals read at these points are used 
by Neurosky as inputs to an interpretative network to 
determine levels of attention and meditation, output as 
discrete readings on a scale from 0 to 100. The system is 
capable of distinguishing electrical activity caused by the 



neural activity of interest from other sources, such as 
electromagentic interference in the environment, although 
care must be taken in the procedure, particularly with 
mobile phone technologies. There are a number of 
compelling reasons for investigating the use of Neurosky 
for HCI: it is a low-cost, easy-to-use EEC reader developed 
for the leisure industry. The principle advantage is its 
unobtrusive nature, providing the potential to conduct 
accurate user studies in more practical and naturalistic 
settings without inducing the stress or distractions of more 
elaborate scanning processes. However, as highlighted in a 
recent usability study [12], there are tradeoffs: for example, 
the device provides a much coarser reading of brain activity 
than multi-electrode EEG or the other BCI technologies 
mentioned in Section 2. Given that the NeuroSky provides 
only partial information about attention, we believe it may 
be effective as a BCI in conjunction with one or more other 
modalities of detection. 
 
3.3. Attention Representation 
 

In contrast to the previous components, the attention 
representation component acts to store, integrate and 
interpret where, when and to what degree the user is and has 
been attending to the scene. In terms of gaze behaviour (see 
Section 3.1), this component uses either the eye direction or 
the head direction to establish the screen-space coordinates 
of where the user is looking. Special coordinates are used to 
signal that the user is looking outside of the screen area, 
detailing which screen border they are looking outside. For 
example, top signifies that the user is looking above the top 
of the screen, and thus outside the valid screen area. We 
envisage Neurosky output (see Section 3.2) to be integrated 
with gaze behaviour derived from the gaze detector in order 
to provide additional measurements of the degree to which 
attention is being paid. It is hoped this data will enhance 
spatial and temporal information relating to the user’s 
detected gaze behaviour, to provide more information about 
the possible depth of processing in addition to what is being 
processed.  

 
3.3.1. Virtual Attention Objects and Level of Attention 
 

Since metrics based on user gaze configuration during a 
single frame are highly unreliable indicators of attention, we 
define a level of attention metric. It refers to a clustering of 
a user’s focus of interest in a single region over multiple 
frames. In order to simplify the analysis of what is being 
looked at, we split the scene into multiple virtual attention 
objects, or VAO’s. A single VAO is attached to each object 
for which we wish to record attention information. If the 
screen-coordinate of the gaze fixation is located inside a 
VAO, then its corresponding level of attention is updated to 
reflect this. Thus, as the user’s gaze moves around the 
screen, each VAO maintains a history of how many times 

and when the user has fixated it. Over a larger time-frame, 
and for a specific set of VAO’s, the level of interest of the 
user for that set can be computed based on the stored 
attention levels for each VAO of the specified set. 

These are the basic elements with which more 
complicated attention calculations may be conducted. For 
example, by defining a set of VAO’s containing only those 
objects currently relevant to the interaction, such as a 
recently pointed to or discussed object, and comparing the 
attention paid to these objects with the rest of the scene, we 
can obtain a measurement of how engaged the user has been 
with respect to the interaction, rather than to superficial or 
irrelevant scene details. 
 

4. AGENT INTERACTION SCENARIO 
 
In this Section, we provide a description of a generic 
scenario template forming the basis of a number of 
experiments we intend to conduct regarding user attention 
to an agent during interaction. Each of the aforementioned 
components (see Section 3) will communicate via a 
Psyclone connection - a blackboard system for use in 
creating distributed multi-modal A.I. systems. This system 
is modular and amenable to having components plugged in 
and out, as necessitated by the scenario requirements or 
experiment under consideration.  

 We currently model the agent in the role of speaker and 
the user as listener. While the agent recites a story, user 
attention is recorded over the scene and stored in the 
attention representation described in Section 3.3. There are 
a number of possible ways in which the representation can 
then be used: Firstly, it can be used solely for user 
behaviour analysis. Recordings can be made of user 
behaviour, agent behaviour and the resultant attention 
representation in order to study possible correlations 
between user behaviour and agent behaviour across the 
scenario. This could also be achieved using gaze-tracking 
equipment, however our approach may allow the user to 
behave more freely without the burden of a head-mounted 
tracking device. Furthermore, in most situations it would not 
be feasible for the user to wear the gaze-tracker and the 
Neurosky device at the same time. 

Secondly, it can be used by the agent to autonomously 
decide how to adapt to the state of the user. In the role of 
speaker, for example, if it is detected that the user is looking 
outside the screen, thus interpreted as not paying attention 
to the scenario, then the agent may conduct a behaviour to 
adapt to this, such as pausing the recital to wait until the 
user pays attention to it again, or even asking the user to pay 
attention. In order to achieve this, the agent is provided with 
access to the information regarding all VAO’s in the scene. 
Since the agent is itself a VAO, it therefore has access to a 
full assessment of the user’s gaze history with respect to the 
scene and specific objects of attention. In this respect, it 
could be also be used as an interface, allowing the user to 



control and direct the scenario using their attention 
capabilities. For example, when presented with a number of 
objects in a scene, if the user may pay attention to a specific 
object in order for the agent to provide information about it. 
In this way, interaction becomes more subtle, without the 
need for explicit requests by the user or agent to be made. 
 

5. DISCUSSION 
 
Real-time analyses of user’s behaviour and attention levels 
during agent-based interactions are an important element of 
user modelling. The analyses will establish patterns of 
behaviour and attention allocation useful for endowing 
autonomous agents with more natural interaction 
capabilities. The analyses will also serve to study the 
relationship between visual and cognitive attention. The 
analyses will help to address important questions: are 
visually distracted users highly attentive cognitively? Are 
there categories for attention allocation which are conducive 
of better results? Do people fall into distinguishable patterns 
of attention? A key factor towards this direction will be 
correlating the outputs of the gaze tracker and Neurosky in 
recorded agent-user interaction scenarios. Findings 
regarding statistical analysis of the two outputs, especially 
in highly ambiguous situations (e.g. user’s gaze fixated at 
the screen but with low attention levels) should provide 
interesting outcomes that will enhance the scenario and help 
the interaction become more natural. Furthermore, finding 
relationships between the two components will provide an 
efficient means for evaluating their individual performance 
and examine those conditions in which more emphasis 
should be given to either of the two. This will play a 
particularly important role in the third component, as fusion 
will be highly influenced by results from the studies. 
 

6. CONCLUSIONS 
 

We have presented a design for a user attention model 
featuring three core components. The first two components 
detect user gaze behaviour based on input from a web-
camera and measure attention levels using a 
neurophysiological recording device, respectively. The third 
component integrates detected information to provide a 
model of user attention, representing where, when and to 
what degree the user is and has been attending to the scene. 
We will be using this model to define a number of 
scenarios, based on the generic model described in Section 
4, to analyse user behaviour, inform agent behaviour and 
help manage interaction. 

We also intend to consider, at a future stage, the agent in 
the role of listener. In this role, the agent may provide 
various types of non-verbal feedback to the user (see for 
example [7]). In conjunction with speaking role capabilities 
currently being investigated, this would allow for the 
construction of more sophisticated scenarios. 
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