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Abstract. Both symbolic knowledge representation systems and artifi-
cial neural networks play a significant role in Artificial Intelligence. A
recent trend in the field aims at interweaving these techniques, in order
to improve robustness and performance of classification and clustering
systems. In this paper, we present a novel architecture based on the con-
nectionist adaptation of ontological knowledge. The proposed architec-
ture was used effectively to improve image segment classification within
a multimedia application scenario.

1 Introduction

Intelligent systems based on symbolic knowledge processing, on the one hand,
and artificial neural networks, on the other, differ substantially. Nevertheless,
they are both standard approaches to artificial intelligence and it is very desirable
to combine the robustness of neural networks with the expressivity of symbolic
knowledge representation. This is the reason why the importance of the efforts
to bridge the gap between the connectionist and symbolic paradigms of artificial
intelligence has been widely recognised. As the amount of hybrid data containing
symbolic and statistical elements, as well as noise, increases, in diverse areas,
such as bioinformatics, or text and web mining, including multimodal application
scenarios, neural-symbolic learning and reasoning becomes of particular practical
importance. Notwithstanding the progress in this area, this is not an easy task.
The merging of theory (background knowledge) and data learning (learning from
examples) in neural networks has been indicated to provide learning systems
that are more effective than purely symbolic and purely connectionist systems,
especially when data are noisy. This has contributed decisively to the growing
interest in developing neural-symbolic systems [9, 5, 6, 4].

While significant theoretical progress has recently been made on knowledge
representation and reasoning using neural networks, and on direct processing of
symbolic and structured data using neural methods, the integration of neural
computation and expressive logics is still in its early stages of methodological
development [6].



Adaptation of symbolic ontological knowledge from raw data is an ideal use-
case for further development and exploitation of neural-symbolic systems. Since
the pioneering work of McCulloch and Pitts, a number of systems have been
developed in the 80s and 90s, including Towell and Shavlik’s KBAN, Shastri’s
SHRUTI, the work by Pinkas [9], Holldobler [6] and Artur S. d’Avila Garcez et
al[5][4]. These systems, however, have been developed for the study of general
principles, and are in general not suitable for real data or application scenarios
that go beyond propositional logic. Only very recently, the theory has advanced
far permitting the implementation of systems which can deal with logics beyond
the propositional case [6].

This integration can be realised by an incremental workflow for knowledge
adaptation. Symbolic knowledge bases can be embedded into a connectionist
representation, where the knowledge can be adapted and enhanced from raw
data. This knowledge may in turn be extracted into symbolic form, where it
can be further used. This workflow is generally known as the neural-symbolic
learning cycle, as depicted in the following diagram.

Fig. 1. The neural-symbolic learning cycle

In this paper we focus on developing connectionist adaptation of ontological
knowledge, in particular of knowledge represented using expressive description
logics. We then show that neural-symbolic methods can be used effectively to
enhance knowledge adaptation within a multimedia application scenario. The
rest of the paper is organized as follows. Section 2 presents the proposed archi-
tecture that mainly consists of the formal knowledge and the knowledge adap-
tation components, which are described in sections 3 and 4 respectively. Section
5 presents a multimedia analysis experimental study illustrating the theoretical
developments. Conclusions and planned future activities are presented in section
6.

2 The proposed Architecture

Capitalizing these experiences our system is designated as a learning, evolving
and adapting cognitive model. Starting with basic knowledge about the nature
of the problem and by using powerful reasoning mechanisms the proposed sys-
tem gradually attempts to evolve its knowledge. In that way it incorporates its
observations along with its own or the user’s evaluation.
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Figure 2 summarizes the proposed system architecture, consisting of two
main components: the Formal Knowledge and the Knowledge Adaptation. The
Formal Knowledge stores, the terminology and assertions, constraints that de-
scribe the problem under analysis in the appropriate knowledge representation
formalism. More specifically, the Ontologies module formally represents the gen-
eral knowledge about the problem.

It is actually a formal ontological description representing the concepts and
relationships of the field, providing formal definitions and axioms that hold in
every similar environment. This forms the system’s knowledge which generated
during the Development Phase by knowledge engineers and experts.

Fig. 2. The semantic adaptation architecture

Moreover, the Formal Knowledge contains the World Description that is
actually a representation of all objects and individuals of the world, as well as
their properties and relationships in terms of the Ontology.It is evident that most
of the above data involve different types of uncertain information and, thus, they
can be represented as formal (fuzzy) description logic assertions connecting the
objects and individuals of the world with the concepts and relationships of the
Ontology. This operation is performed by the Semantic Interpretation module.

In real environments however, this is a rather optimistic claim. Unfortunately,
there may be lot of reasons that cause inconsistencies in the Formal Knowledge.
For example, it is impossible to model all specific environments and thus, in some
cases, conflicting assertions can arise. As a more abstract example (and more
difficult to handle), the personality and expressivity of a specific user makes some
of the axioms and constraints of the Ontology non-applicable or even wrong,
according to logical entailments or user feedback. These inconsistencies make
the formal use of knowledge that the Reasoner provides rather problematic. In
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such cases, the Knowledge Adaptation component of the system tries to resolve
the inconsistency through a recursive learning process.

The knowledge adaptation improves the knowledge of the system by changing
the world description and to some degree the axioms of the terminology of the
system. The new information as represented in a connectionist model and, with
the aid of learning algorithms, is adapted and then re-inserted in the knowledge
base through the Knowledge Extraction and the Semantic Interpretation module
for adaptation purposes.

3 The Formal Knowledge Component

3.1 Formal (Ontological) knowledge and Connectionist models

The focus of the proposed system architecture in Figure 2 is the adaptation of
the knowledge base, so as to deal with contextual information and raw data
peculiarities obtained from multimodal inputs. In this paper we adopt recent
results in formal knowledge representation and neural-symbolic integration. In
this framework, formal knowledge is transferred to a connectionist system and is
adapted by means of machine learning algorithms. Knowledge extraction from
trained networks is another important issue, which is included in the neural-
symbolic loop, although not studied analytically in this paper.

3.2 Kernel Definition for Description Logics

In this section recent work that extracts parameter kernel functions for individ-
uals within ontologies is presented [3, 2, 1]. Exploitation of these kernels permits
inducing classifiers for individuals in Semantic Web (OWL) ontologies. In this pa-
per, extraction of kernel functions is the main outcome of the Formal Knowledge
component - assisted by the reasoning engine - for feeding the connectionist-
based Knowledge Adaptation module.

The basis for developing these functions in the framework of the formal
knowledge is the encoding of similarity between individuals, as they are pre-
sented to the knowledge base of the system, by exploiting semantic aspects of
the reference representations.

The family of kernel functions kF
p : Ind(A)×Ind(A) → [0, 1], for a knowledge

base K = 〈T, A〉 consisting of the TBox T (set of terminological axioms of
concept descriptions-Ontology) and the ABox A (assertions on the world state-
World Description); Ind(A) indicates the set of individuals appearing in A), and
F = {F1, F2, . . . , Fm} is a set of concept descriptions. These functions are defined
as the Lp mean of the, say m, simple concept kernel functions κi , i = 1, . . . ,m,
where, for every two individuals a,b, and p > 0,

κi(a, b) =





1 (Fi(a) ∈ A ∧ Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ ¬Fi(b) ∈ A)
0 (Fi(a) ∈ A ∧ ¬Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ Fi(b) ∈ A)
1
2 otherwise

(1)
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∀a, b ∈ Ind(A) kF
p (a, b) :=

[ m∑

i=1

∣∣∣κi(a, b)
m

p∣∣∣
]1/p

(2)

The rationale of these kernels is that similarity between individuals is deter-
mined by their similarity with respect to each concept Fi , i.e, if they both are
instances of the concept or of its negation. Because of the Open World Assump-
tion for the underlying semantics, a possible uncertainty in concept membership
is represented by an intermediate value of the kernel. A value of p = 1 has
generally been used for implementing (2) in [3]. In our case, we have used the
mean value of the above kernel, which is computed through high level feature
relations and a normalized linear kernel which is computed through low level
feature values.

3.3 The Reasoning Engine

It should be stressed that the reasoning engine, included in Figure 2, is of major
importance for the whole procedure, because it assists the operation of all knowl-
edge related components. First, during the knowledge development phase, it is
responsible for enriching manual generation of concepts and relations, so that
computation of the kernels in (1), (2) includes the fewest ambiguities possible,
and any inconsistencies are removed from the knowledge representation. In fact
(1), (2) are computed, by relating every two individuals w.r.t each concept in
the knowledge base, by using the reasoning engine. In the operation phase, it
interacts with the semantic interpretation layer and the connectionist system for
achieving knowledge adaptation to real life environments. Both crisp and fuzzy
reasoners can form this engine. In our case, we have been using the FIRE engine
[12].

The FIRE system is based on Description Logic f-SHIN [11] that is a fuzzy
extension of the DL SHIN [7] and it similarly consists of an alphabet of dis-
tinct concept names (C), role names (R) and individual names (I). The main
difference of the fuzzy extended Description Logics (DL) is their assertional com-
ponent. Hence, in fuzzy DLs ABox is a finite set of fuzzy assertions of the form
〈a : C./n〉, 〈(a, b) : R./n〉, where ./ stands for ≥, >,≤, < , for a, b ∈ I. Fuzzy rep-
resentation enriches expressiveness, so a fuzzy assertion of the form 〈a : C ≥ n〉
means that a participates in the concept C with a membership degree that is
at least equal to n. In this case a contradiction is formed when an individual
participates in a concept with a membership degree at least equal to n and at
the same time with a membership degree at-most equal to l, with l < n.

The main reasoning services supported by crisp reasoners are Abox consis-
tency, entailment and subsumption. These services are also available by FiRE
together with greatest lower bound queries which incorporate the fuzzy element.
Since a fuzzy ABox might contain many positive assertions for the same indi-
vidual, without forming a contradiction, it is of interest to compute what is the
best lower and upper truth-value bounds of a fuzzy assertion. For that purpose
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the term of greatest lower bound (GLB) of a fuzzy assertion with respect to a
knowledge base is defined.

The reason why we use fuzzy reasoning is that fuzzy assertional component
permits more detailed descriptions of a domain. In order to compute (1), (2) the
GLB reasoning service of FiRE is used, but the resulting greatest lower bound
is treated crisply. In other words, if GLB for Fi(a) > 0, then Fi(a) ∈ A, while
if GLB for Fi(a) = 0, then ¬Fi(a) ∈ A. As a future extension, we intend to
incorporate the fuzzy element in the estimation of kernel functions using fuzzy
operations like fuzzy aggregation and fuzzy weighted norms for the evaluation
of the individuals.

4 The Knowledge Adaptation Mechanism

4.1 The System Operation Phase

In the proposed architecture of Figure 2, let us assume that the set of individuals
(with their corresponding features and kernel functions), that have been used
to generate the formal knowledge representation in the development phase, is
provided, by the Semantic Interpretation Layer, to the Knowledge Adaptation
component.

Support Vector Machines constitute a well known method which can be based
on kernel functions to efficiently induce classifiers that work by mapping the
instances into an embedding feature space, where they can be discriminated by
means of a linear classifier. As such, they can be used for effectively exploiting
the knowledge-driven kernel functions in (1), (2), and be trained to classify
the available individuals in different concept categories included in the formal
knowledge. In [3] it is shown that SVMs can exploit such kernels, so that they can
classify the (same) individuals - used for extracting the kernels - accurately; this
is validated by several test cases. A Kernel Perceptron is another connectionist
method that can be trained using the set of individuals and applied to this
linearly separable classification problem.

Let us assume that the system is in its - real life - operation phase. Then,
the system deals with new individuals, with their corresponding - multimodal
- input data and low level features being captured by the system and being
provided through the semantic interpretation layer to the connectionist subsys-
tem for classification to a specific concept. It is well known that due to local or
user oriented characteristics, these data can be quite different from those of the
individuals used in the training phase; thus they may be not well represented
by the existing formal knowledge. In the following we discuss adaptation phase
of the system to this local information, taking place through the connectionist
architecture.

4.2 Adaptation of the Connectionist Architecture

Whenever a new individual is presented to the system, it should be related,
through the kernel function to each individual of the knowledge base w.r.t a spe-
cific concept - category; the input data domain is, thus, transformed to another
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domain - taking into account the semantics that have been inserted to the kernel
function.

There are some issues that should be solved in this procedure. The first is
that the number of individuals can be quite large, so that transporting them in
different user environments is quite difficult. A Principal Component Analysis
(PCA), or a clustering procedure can reduce the number of individuals so as to
be capable of effectively performing approximate reasoning. Consequently, it is
assumed that through clustering, individuals become the centers of clusters, to
which a new individual will be related through (1), (2).

The second issue is that the kernel function in (1), (2) is not continuous
w.r.t individuals. Consequently, the values of the kernel functions when relating
a new individual to any existing one should be computed. To cope with this
problem, it is assumed that the semantic relations, that are expressed through
the above kernel functions, also hold for the syntactic relations of the individuals,
as expressed by their corresponding low level features, estimated and presented
at the system input. Under this assumption, a feature based matching criterion
using a k-means algorithm, is used to relate the new individual to each one of
the cluster centers w.r.t the low level feature vector. Various techniques can be
adopted for defining the value of the kernel functions at the resulting instances.
A vector quantization type of approach, where each new individual is replaced
by its closest neighbor, when computing the kernel value, is a straightforward
choice. To extend the approach to a fuzzy framework, weighted averages and
Gaussian functions around the cluster centers are used to compute the new
instances’ kernel values.

In cases that classification - of the new individual - in the specific (local)
environment and the specific individual characteristics or behaviour, remains
linearly separable, the SVM or Kernel Perceptron are retrained - including the
new individuals in the training data set, while getting the corresponding desired
responses by the User or by the Semantic Interpretation Layer - thus, adapting
its architecture / knowledge to the specific context and use.

In case the problem doesn’t remain linearly separable, we propose to use an
hierarchical, multilayer kernel perceptron, the input layer of which is identical
to the trained kernel perceptron, and which is - constructively - created, by
adding hidden neurons, and learning the resulting additional weights through a
tractable adaptation procedure [10]. The latter is achieved through linearization
of the added neurons’ activation function, while taking into account both the new
input/desired output data, as well as the previous knowledge and individuals. To
stress, however, the importance of current training data, a constraint that the
actual network outputs are equal to the desired ones, for the new individuals, is
used. As a result of this network adaptation, the system will be able to operate
satisfactorily within the user’s environment

The problem will, in parallel, be reported back to formal knowledge and
reasoning mechanism, for updating system’s knowledge for the specific context,
and then (off-line) providing again the connectionist module of the user with
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a new, knowledge-updated, version of the system. This case is discussed in the
following subsection.

4.3 Adaptation of the Knowledge Base

Knowledge extraction from trained neural networks, e.g. perceptrons, or neuro-
fuzzy systems, has been a topic of extensive research [8]. Such methods can
be used to transfer locally extracted knowledge to the central knowledge base.
Nevertheless, the - most characteristic - new individuals obtained in the local
environment, together with the corresponding desired outputs - concepts of the
knowledge base, can be transferred to the knowledge development module of the
main system (in Figure 2), so that with the assistance of the reasoning engine, the
system’s formal knowledge, i.e., both the TBox and the ABox, can be updated,
w.r.t the specific context or user.

More specifically the new individuals obtained in the local environment form
an ABox A

′
. In order to adapt a knowledge base K = 〈T,A〉 for a defined concept

Fi using atomic concepts denoted as C, we check all related concepts denoted
as RFiC1 . . . RFiCn under the specific context, i.e. in A

′
. Let |RFiCn| denote the

occurrences of RFiCn ∈ A, t denote a threshold defined according to the data
size and Axiom(Fi) denote the axiom defined for the concept Fi in the knowledge
base (i.e. Axiom(Fi) ∈ T ). Furthermore, we write RFiCn ∈ Axiom(Fi) when
the concept RFiCn is used in Axiom(Fi) and RFiCn 6∈ Axiom(Fi) when it is
not used. Knowledge adaptation is made according to the following criteria:

|RFiCn| =




0− t/4 If RFiCn ∈ Axiom(Fi) → Remove RFiCn from Axiom(Fi)
t/4− t No adaptation in K
> t If RFiCn 6∈ Axiom(Fi) → Axiom(Fi) ∪RFiCn

(3)
Equation (3) implies that the related concepts with the most occurrences

in A
′

are selected for the adaptation of the terminology, while those that are
not significant are removed. Currently, the DL constructor that is used for the
incorporation of the related concept, in order to adapt the knowledge base, is
specified by the domain expert. Future work includes a semi-automatic selection
of constructors, that will be based on the inconsistencies formed by the use of
specific DL constructors for the update of the knowledge base.

5 A Multimedia Analysis Experimental Study

The proposed architecture was evaluated in solving segment classification in
images and video frames from the summer holiday domain. Such images typi-
cally include persons swimming or playing sports in the beach and therefore we
selected as concepts of interest for this domain the following: Natural-Person,
Sand, Building, Pavement, Sea, Sky, Wave, Dried-Plant, Grass, Tree, Trunk and
Ground.
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Following a region-based segmentation procedure, we let each individual cor-
respond to an image segment. The low level features used as input to the system
for each individual are the MPEG-7 Color Structure Descriptor, Scalable Color
and Homogeneous Texture together with the dominant color of each segment.
The colours used in this case are White, Blue, Green, Red, Yellow, Brown, Grey
and Black.

We used equations (1)-(2) to compute the kernel functions and transferred
them to the connectionist subsystem. In that way we trained threshold (and
multilayer) perceptrons to classify more than 3000 individuals (i.e., regions ex-
tracted from 500 images), regions to the above-mentioned concepts. We tested
the classification performance with new segments, with results reported in Ta-
ble 1. The next step was to use the improved performance of the connectioninst
model which forms a new ABox, in order to adapt the knowledge base. The roles
used in our knowledge base are above− of , below− of , left− of and right− of
that indicate the neighboring segments, and are extracted by a segmentation al-
gorithm, included in the semantic interpretation layer. The new axioms referred
to concepts Sea, Sand, Sky, Tree and Building using a neighbor criterion, that
is the related concept in the specific context. For example, the concept Sea was
defined as Sea ≡ Blue u ∃below − of.Blue. Assuming Sea as F1, then the con-
cepts formed by the combination of spatial relations with the other concepts i.e.
∃below − of.Blue, ∃below − of.Brown, . . . , ∃above − of.Green, form the set of
the related concepts RF1C1 . . . RF1Cn.

Using the technique described in section 4.3, the relative concepts that play
a significant role, according to the Abox that is formed by the connectionist
model, were defined. An adapted axiom was

Sea ≡ Blueu (∃below−of.Bluet∃above−of.Brownt∃above−of.Whitet
∃right− of.White t ∃left− of.White t ∃left− of.Blue t ∃right− of.Blue t
∃above− of.Blue t ∃below − of.Blue).

The adapted knowledge was again transferred , through (1) and (2) to the
connectionist system, which was then able to improve its classification perfor-
mance, w.r.t the five concepts, as shown in third column of Table 1. It is im-
portant to note that the performance obtained is similar to that provided by
adaptation of the (kernel) multilayer perceptron presented in 4.2.

6 Conclusion

In this paper we presented a novel architecture based on connectionist adapta-
tion of ontological knowledge. The proposed architecture was evaluated using a
multimedia analysis experimental study presenting very promising results. Fu-
ture work, includes the incorporation of fuzzy set theory in the kernel evaluation.
Additionally, we intend to further examine the adaptation of a knowledge base
using the connectionist architecture, mainly focusing on the selection of the ap-
propriate DL constructors and on inconsistency handling.
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NN Performance Adapted KB
Label Regions Precision Recall Precision Recall

Person 76 56.25% 47.3 56.25% 47.3%
Sand 116 75% 51.7% 83.1% 72.1%

Building 108 58.8% 37 72.7% 53.6%
Pavement 64 25% 18% 25% 18%

Sea 80 68.1% 75% 88% 79.2%
Sky 88 64.7% 50% 75.3% 64%

Wave 36 33.3% 66.6% 33.3% 66.6%
Dried Plant 64 50% 37.5% 50% 37.5%

Grass 80 52.3% 55% 52.3% 55%
Tree 92 63.1% 52.1% 71.2% 63.1%

Trunk 72 57.1% 22.2% 57.1% 22.2%
Ground 112 24.5% 53.5% 24.5% 53.5%

Table 1. Performance after the adaptation of the knowledge base
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