
Security and Privacy Solutions associated with
NoSQL Data Stores

Gerasimos Vonitsanos∗, Elias Dritsas∗, Andreas Kanavos∗, Phivos Mylonas†, Spyros Sioutas∗
∗Computer Engineering and Informatics Department

University of Patras, Patras, Greece
{mvonitsanos, kanavos, sioutas}@ceid.upatras.gr, eldritsas@gmail.com

†Department of Informatics
Ionian University, Corfu, Greece

fmylonas@ionio.gr

Abstract—Technologies such as cloud computing and big data
management, have lately made significant progress creating an
urgent need for specific databases that can safely store extensive
data along with high availability. Specifically, an evergrowing
amount of companies have put to use a multitude of non-
relational databases, typically known as NoSQL databases. Not
utilizing predefined guidelines, these databases largely offer a
well structured mechanism for the retrieval and storage of
numerous data. This fact renders them superior to RDBMS
platforms. When on the other hand, big data and parallel
processing is encountered in particular, and therefore the use
of relational modeling is rendered obsolete, NoSQL databases
largely exceed in superiority. Sensitive data is stored daily in
NoSQL Databases, making the privacy problem more serious
while raising essential security issues. In our paper, security
and privacy issues when dealing with NoSQL databases are
introduced, and in following, security mechanisms and privacy
solutions are thoroughly examined.

Index Terms—NoSQL Databases, NoSQL Security, Secure
Databases, Policy Update, Access Control

I. INTRODUCTION

The advances in cloud computing technology and dis-
tributed web applications, along with the ever-increasing enor-
mous volume of data for storage and further processing,
have necessitated the adoption of non-relational databases,
commonly called NoSQL or ”Not only SQL” [22]. It is
widely known that the traditional SQL database is not able
to cope with Big Data [28] as NoSQL systems, nowadays,
are experimenting with an escalated popularity [20]. In recent
years, many NoSQL databases have made their appearance;
for example, Cassandra and MongoDB are two popular ones,
to name a few. Some useful features of NoSQL databases
are the high availability, scalability, better performance, plus
the advantage to store and process large-scale semi-structured
and/or unstructured data faster than traditional RDBMS [20],
[28].

However, due to the ever increasing use of NoSQL
databases, a significant amount of sensitive data is exposed to a
number of security vulnerabilities, threats, and risks. Absence
of encryption support and a not so strong authentication status

between servers and clients are some of the leading security
issues in NoSQL Databases. Also, we should bear in mind
that simple authorization is provided without support for role-
based access control (RBAC); therefore is minimum protection
for injections and denial of service attacks [14].

Brewer introduced the CAP (Consistency, Availability, Par-
tition Tolerance leading to a conjecture [7] about the trade-offs
having to do with the progress of developing a distributed
database system. Brewers conjecture, therefore, in its more
formal version, is officially published as the CAP theorem in
[13]. Specifically, the CAP theorem indicates that no shared
data system could simultaneously provide above two out of
the three characteristics, including consistency, availability, as
well as partition tolerance.

Regarding organizations, Amazon developed the Dynamo
technology [12], whereas Google produced the distributed
storage system Bigtable [9]. These particular technologies
have inspired many NoSQL applications installed in compa-
nies, like Facebook or Twitter. Modern companies encounter
non-relational data and thus require superior databases com-
pared to traditional ones that face scalability and availability
problems due to their data size. There are already several
authorization models in relational databases where views are
usually utilized. In this way, SQL queries are used to display
a certain state of a specified part of the database [4]. Some
NoSQL Databases managed by Big Data use new authorization
models, specifically designed for structure, speed, and a huge
amount of data. These models include key-value, wide column,
and document-oriented authorization. In addition, the storage
and retrieval of these records are achieved through a unique
key for each record while providing a swift search [10].

In this work, we present security and privacy issues within
NoSQL databases. Additionally, we examine the possibility to
propose the most efficient security mechanisms and privacy
solutions. More to the point, protecting data and handling
control to access are regarded as vital security issues in
NoSQL. Several threats concerning NoSQL database security
are also considered, ranging from distributed environment,
authentication, fine-grained authorization to protection of data
at rest and in motion.

The remainder of this paper is categorized in the follow-978-1-7281-5919-5/20/$31.00 c©2020 IEEE

ing mode. Section II analyzes a survey of existing related
works concerning mechanisms to overcome security issues.
Moreover, Section III overviews a comparative study between
Relational and NoSQL Databases, while in Section IV, our
security and privacy-preserving mechanisms are proposed.
Finally, in Section V, the summary of the proposed paper is
presented.

II. RELATED WORK

Many early papers that described the relation between
Relational and NoSQL databases were studied meticulously
leading to an overview of the NoSQL database, along with the
related characteristics and types. These surveys were positively
predisposed towards NoSQL and the mode it employs to
decline [23], [29]. However, in [5], there was clear interest
about structured and non-structured databases. The mode in
which how using NoSQL databases, like Cassandra, would
meliorate the system performance was also considered and
fully described. It can also scale the network without changing
any hardware or needing to alternate the server infrastructure.
This results in improving the network scalability, with low-
cost commodity hardware.

In [16], a survey paper regarding relational databases is in-
troduced along with NoSQL features and shortcomings. These
shortcomings and issues of the NoSQL databases have been
mentioned in [18]; complexity, consistency and limited eco
structures are considered serious concerns. Another in depth
analysis having to do with security and privacy issues in big
data and NoSQL is considered in [27]. Specifically, because
of the towering size, rapidity and diversity of big data, safety
and privacy matters are diverse in such streaming data in-
frastructures with several data formats; therefore, conventional
security models present complexities in treating such large
scale data. In [21], it is stated that the request for a relational
database is here to stay for some time. This means that it will
exclusively serve in line with applications that will support
business operations. However, NoSQL databases will serve
the large, public and content centric applications. Another
similar work is presented in [22], where an extensive analysis
of security issues with NoSQL Database, like Cassandra and
MongoDB, is considered.

Furthermore, authors in [2] introduce the basic variations
amongst conventional relational databases and NoSQL ones,
while focus on the security mechanism that must be im-
plemented at the middleware by the developers so as to
surpass safety matters of NoSQL databases. In [8], a variety
of SQL and NoSQL data stores formulated to scale plain
OLTP-style application loads over a number of servers, is
examined. Concretely, the new systems are contrasted against
their data model, consistency and storage mechanisms, dura-
bility guarantees, availability, query support, as well as other
aspects. An assessment criterion consisting of multiple safety
characteristics for the analysis of sharded NoSQL databases
is proposed in [31]. This analysis helps various organizations
select appropriate and reliable databases according to their
preferences and security requirements.

Several solutions have also been proposed to improve
privacy-preserving in NoSQL databases. More specifically,
in Arx, a proxy is employed to rewrite NoSQL queries at
the trusted premises. A back-end component, deployed at the
untrusted premises, is utilized to handle computation over
encrypted data [25]. In terms of BigSecret system, standard
encryption is used for protection of the stored data, while the
indexes are encoded with the aid of special methods to permit
comparisons (pseudo-random functions) and range queries
(order-preserving partitioning) [24]. Authors in [30] employ
algorithms of searchable encryption to create a privacy-
preserving key-value store on top of the Redis database. In
this approach, the values are safeguarded using symmetric
encryption, while the keys are protected with pseudo-random
techniques. In another solution, SafeRegions combine secret
sharing and multiparty computation to perform secure NoSQL
queries on three independent and untrusted HBase clusters
providing thus safe computation over the stored values and
security guarantees similar to standard encryption at the same
time [26].

III. COMPARISON OF RELATIONAL AND NOSQL
DATABASES

During the last decades, relational databases, sub-divided
into groups known as tables, have been used to store structural
data. The units of data in each table are known as columns, and
each unit of the group is known as a row. Also, the columns
in a relational database have relationships amongst them. This
phenomenon is bound to alteration over the last years because
of the escalation of big-sized web applications, which output
a large amount of data that traditional relational databases
cannot handle any more [11]. NoSQL databases are sometimes
referred as “Not only SQL” to give some emphasis on the
fact that they may support query languages that are SQL-like.
Nowadays, it is stated that NoSQL databases have more to
offer than just present solutions to scale problems, while also
provide many important advantages [11] like the following:

• The data representation is schema-less, and there is no
need to define a certain structure from scratch since new
fields can be added at run-time.

• The speed, even with a small amount of data, can be
processed in milliseconds instead of hundreds of millisec-
onds.

• The elasticity of the applications because of the scalabil-
ity features NoSQL databases provide.

• Reduction in development time, as developers do not
undertake the laboring task of facing complex SQL
queries and difficult joints so as to collate the data from
varied tables into a new view.

Some of the differences between relational and NoSQL
databases are listed in the following paragraphs.

A. Reliability of Transactions

The ACID (atomicity, consistency, isolation, durability)
model is fully supported by the design of relational databases,

providing high reliability in transactions unlike the NoSQL
databases.

B. Scalability Issues and Cloud Support

The primary purpose of cloud technology is to offer end-
users an array of services. NoSQL databases are fully compat-
ible with cloud environment requirements as they can analyze
not only raw structured data, but also semi-structured or
unstructured data from various sources, since they are not
compliant with the ACID model. On the other hand, the
relational databases do not provide data search on a full basis
and their characteristics are now designed for cloud use.

The need for scalability may be one of the most significant
problems of relational databases as they rely on vertical
scalability to upgrade the performance. More specifically, this
upgrade method requires the purchase of expensive equipment
such as RAM, processors, SSD hard drives, etc. and in
some cases, this is not easily achieved due to each system
constraints. Also, the possibility of horizontal scaling is not
supported by the addition of extra nodes and therefore, cannot
sustain demanding online applications with many users and
distributed data. However, NoSQL databases support only
horizontal scaling since they do not deal with relational data.

C. Complexity and Big Data Management

The complexity of NoSQL databases is less than that of
relational databases as it is not necessary to create tables to
record data, but instead the modeling by considering a query
method that can be used. The development of a database
structure on a relational database is always considered a
complicated task compared to the abstract model of a NoSQL
database, where data can be stored regardless of whether they
are structured, unstructured, or semi-structured.

NoSQL databases have a valuable role in Big Data manage-
ment since they are well-suited for storing or retrieving data in
high speed across distributed nodes, thus taking advantage of
multi-core GPU architectures. In relational databases, where
accuracy is more important than speed, the data should be
stored in tables’ rows and columns, while the scalability is
always considered a big issue. In the case of supporting
conventional applications with small datasets, they are the
most reasonable choice, but slitting the data across different
servers increases the arduousness requiring complex SQL
queries for joining the data again.

D. Data Model

Sets in mathematics are the driving force for a relational
database; all the data are represented as mathematical n-ary
relations, where an n-ary relation is a subset of the Cartesian
product of N domains. The data are represented as tuples
inside the database and are further grouped into relations.
The relation (represented by table) contains a set of tuples
(represented by rows); where the column in the relation table
utilizes the sequence of attributes, the type of an attribute is
identified by the domain, which is the set of values that have a
common meaning. This data model is precise to the point and

well structured, while the columns and the rows are described
by a well-defined schema.

NoSQL databases can employ many modeling methods
such as graph, key-value stores and document data model.
In terms of classification procedure, NoSQL is named after
their data model. Still in some cases, NoSQL database system
can be identified using two or more of the data models that
represent their data. NoSQL data model does not utilize the
table as storage structure of the data and this is considered
the main feature that distinguishes the NoSQL from relational
databases. Furthermore, it is schema-less and as a result, can
handle the unstructured data like word, pdf, images, as well
as video files, in a very efficient method.

E. Data Warehouse and Crash Recovery

Regarding data warehousing, relational databases gather
data from an array of sources and the oversize of stored data
results in big data problems. To name a few, some problems are
the performance degradation when utilizing an OLAP (Online
Analytical Processing), statistical process or Data Mining. On
the other hand, NoSQL databases are not designed when
considering data warehouse applications, because designers
are focused on issues, like scalability, availability and high
performance.

Crash recovery is implemented in relational databases via
the recovery manager, which holds the responsibility to ensure
durability and transaction atomicity by using log files and
ARIES algorithm. The crash recovery in NoSQL databases
depends on replication to recover from the crash.

F. Privacy and Security

Most relational databases do not provide a single feature
regarding embedding security in the database itself. As a
result, this requires developers to directly impose security
systems in the middleware. Classic cryptography mechanisms
and encryption protocols, like asymmetric key encryption
schemes, digital signature schemes, zero-knowledge Proof of
Knowledge, as well as commitment schemes, which are based
on SRSA (Strong RSA), bilinear maps [3], discrete logarithm,
homomorphic encryption, fully or not [1], have been widely
considered for securing communication and ensuring data
confidentiality in relational databases.

Nonetheless, a very vital shortcoming of NoSQL databases
is considered the fact that data files are not by default
encrypted, but such a process takes place in the application
layer before sending data to the database server. Although
there are solutions that provide encryption services, these lack
horizontal scaling and transparency required in the NoSQL
environment.

Furthermore, only a few NoSQL databases provide en-
cryption mechanisms to protect user-related sensitive data.
By default in NoSQL databases, the inter-node communi-
cation is not encrypted and does not support SSL (Secure
Sockets Layer) client-node communication (as in relational
databases), breaking the network security [28]. Also, there is
no integration of authentication or authorization mechanisms.

The distributed environments increase attack surface across
several distributed nodes and enforcing integrity constraints
is much complex in NoSQL databases. In general, only a few
categories of NoSQL databases provide mechanisms to employ
encryption techniques protecting data at rest.

IV. PROPOSED SECURITY AND PRIVACY SOLUTIONS

Below are presented our proposed security and privacy
solutions for NoSQL data stores.

A. Pseudonyms-based Communication Network

In the context of this system, users can have access to
multiple services by inserting their credentials only once, that
is when they are initially connected to the system. Such a
system is called anonymous because users can be known only
through their pseudonyms, and the transactions demonstrated
by the same user cannot be linked, as their identity is disclosed.
For this reason, it is considered the best means in terms of user
protection. Furthermore, it is based on two vital protocols,
the RSA (RivestShamirAdleman) and the Diffie Hellman. Its
structure and operations extend Brand’s credential system [6],
whereas it consists of four parties: the users U , a central
Identity Provider denoted as IP , the Service Providers SPs,
and the organization for issuing and validating credentials.
Users are entities that receive credentials and are known to
Service Providers only through their pseudonyms.

The central Identity Provider creates its own public and
secret key, denoted as (P, S) respectively, and uses its secret
key to digitally sign its sensitive data. Each credential is
encoded with m + 1 attributes, denoted as y1, y2, . . . , ym, t
(where t is the credential issuing time). The IP decides on
the Gq , a finite cyclic group of prime order q, to which the
random generators g1, g2, . . . , gm, gm+1, h0, involved in keys
generation, belong to. Specifically,

S = (y1, y2, . . . , ym, t, s) (1)

P = gy1

1 gy2

2 . . . gym
m gtm+1h

s
0, (2)

where s ∈ Zq is secret.
Under the Discrete Logarithm assumption in Gq , these

keys are unique. The IP is responsible for the distribution
of the digital pseudonyms p1, p2, . . . , pm to any user. An
organization can issue a credential to a pseudonym, and
the corresponding user can prove its ownership to another
organization (who knows it by a different pseudonym), by just
revealing the ownership of the credential.

Additionally, the Credential Authority CA prevents the
sharing of credentials or pseudonyms and guarantees that users
who enter the system have a public and secret key that makes
them unique to the system. Another entity in the system is
the Verifier V , whose role is to certify the validity of the
user credentials and to communicate with either the Issuing
Authority or the Credential Authority and inform that the user
is not the owner of the credential that is presenting. Users,
in terms of a digital credential, transmit the public key and

the CAs digital signature derived from a Proof of Knowledge,
through which they prove that they know the secret key and the
attributes in the digital credential that satisfies the particular
attribute property they are revealing.

Each pseudonym and credential belong to well-defined
users. More in detail, collaboration amongst different users,
to show part of their credentials in a Service Provider as
well as to obtain a credential for a user that they could not
obtain (coherent credentials), is not possible. As organizations
are autonomous and separable entities, they can select their
public and secret key independently of the other entities, so
as to ensure the security of these keys and facilitate the keys’
management system.

The pseudonyms’ system can protect user privacy and
provide security, as in such a system, an organization can not
find out anything about a user other than the ownership of a
set of credentials. Specifically, two pseudonyms that belong to
the same user cannot be linked (unlinkability) and identified as
in the Brands system, except for specific conditions. In order
to be efficient, any communication in the system involves as
few entities as possible along with the minimum amount of
information. If a user holds a credential, this can be shown
multiple times without the need to reissue (and consequently
resign) it.

When a user has access to a service, they are validated by
proving that they know the secret key of their pseudonym,
without revealing it, thus preventing pseudonym repetition.
Also, for each pseudonym that a Service Provider associates
with a user, it requires the user to unveil a different encoded
random number of their pseudonym each time and thus,
ensures the unconditional unlinkability of their pseudonyms.
Although the Identity Provider blindly encodes the random
numbers in all of a user’s pseudonyms, that are uniquely
related with them, if a user makes abuse of the service, the
SP can blacklist and reveal numbers. In following, it is able
to globally revoke their pseudonyms and abolish their access
to any of the services they have previously had.

Finally, users, under Discrete Logarithm, can conclusively
prove that their encoded numbers do not belong to the SP ’s
blacklist, while using this one as input on a zero-knowledge
proof and without revealing any information about their iden-
tity. Hence, this technique does not impact users’ privacy and
does not strengthen the SP and IP .

B. Monitoring, Filtering and Blocking

As mentioned above, available applications designed to
monitor NoSQL databases cannot detect and then disable ma-
licious jobs and queries. The Kerberos central authentication
system can be easily bypassed via advanced scripts, and in
general, the level of monitoring is limited to data processing
mainly in the API [17].

In a cloud environment, no information regarding the com-
munication of nodes in the cluster or user connection details
or data altering information (even editing or deleting), is
recorded. In general, since there are no log files, a challenging

problem is to identify incidents of data breach or malicious
data loss in the cluster [15].

Real-time security mechanisms exist in big data technolo-
gies, resulting in high-speed data analysis. Therefore, the
detection of anomalies is real-time implemented and the
recording of security analytics can be frequently updated [14].
Some monitoring tools are available but are limited to con-
trolling user requests at the API level. In general, neither the
characteristics of a malicious query in big data technologies
are defined, nor complete monitoring tools to disable these
malicious queries, exist. One potential technique could be an
initial authentication via Kerberos and in following, a second
level authentication for accessing MapReduce [19].

V. CONCLUSIONS

In this paper, we have addressed major security concerns re-
garding NoSQL databases. Data protection and access control
can be considered some of the key issues of security in NoSQL
technology. Reasons for security threats in various NoSQL
databases have also been thoroughly discussed in the cur-
rent work, like privacy of user data, distributed environment,
authentication, fine-grained authorization and access control,
securing integrity as well as protection of data at rest and in
motion.

In NoSQL databases, Kerberos is used to authenticate the
clients and data nodes. Specifically, to ensure fine-grained
authorization, data are grouped according to their security
level. On the other hand, Cassandra uses TDE technique to
protect data at rest, whereas administrators must implement
controls for ensuring that application and users have only
access to the data they need in order to maintain a secure
MongoDB deployment. Various techniques for mitigating the
attacks on NoSQL databases have also been discussed along
with proposed security and privacy solutions regarding NoSQL
databases.

REFERENCES

[1] M. Ahmadian, F. Plochan, Z. Roessler, and D. C. Marinescu. Se-
curenosql: An approach for secure search of encrypted nosql databases
in the public cloud. International Journal of Information Management,
37(2):63–74, 2017.

[2] J. Ahmed and R. Gulmeher. Nosql databases: New trend of databases,
emerging reasons, classification and security issues. International
Journal of Engineering Sciences and Research Technology (IJESRT),
2015.

[3] E. Bangerter, J. Camenisch, and A. Lysyanskaya. A cryptographic
framework for the controlled release of certified data. In 12th Inter-
national Workshop on Security Protocols, volume 3957, pages 20–42,
2004.

[4] E. Bertino and R. S. Sandhu. Database security-concepts, approaches,
and challenges. IEEE Transactions on Dependable and Secure Comput-
ing, 2(1):2–19, 2005.

[5] A. Bhatewara and K. Waghmare. Improving network scalability using
nosql database. International Journal of Advanced Computer Research,
2(4):488, 2012.

[6] S. Brands, L. Demuynck, and B. D. Decker. A practical system for
globally revoking the unlinkable pseudonyms of unknown users. In 12th
Australasian Conference on Information Security and Privacy (ACISP),
volume 4586, pages 400–415, 2007.

[7] E. A. Brewer. Towards robust distributed systems. In 19th Annual ACM
Symposium on Principles of Distributed Computing, page 7, 2000.

[8] R. Cattell. Scalable SQL and nosql data stores. SIGMOD Record,
39(4):12–27, 2010.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4:1–4:26, 2008.

[10] P. Colombo and E. Ferrari. Fine-grained access control within nosql
document-oriented datastores. Data Science and Engineering, 1(3):127–
138, 2016.

[11] A. Davoudian, L. Chen, and M. Liu. A survey on nosql stores. ACM
Computing Surveys, 51(2):40:1–40:43, 2018.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In 21st ACM Symposium on
Operating Systems Principles (SOSP), pages 205–220, 2007.

[13] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, 2002.

[14] N. Gupta and R. Agrawal. Chapter four - nosql security. Advances in
Computers, 109:101–132, 2018.

[15] V. N. Inukollu, S. Arsi, and S. R. Ravuri. Security issues associated with
big data in cloud computing. International Journal of Network Security
and Its Applications (IJNSA), 6(3):45, 2014.

[16] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain. A survey
and comparison of relational and non-relational database. International
Journal of Engineering Research and Technology (IJERT), 1(6):1–5,
2012.

[17] P. Kadebu and I. Mapanga. A security requirements perspective towards
a secured nosql database environment. In International Conference of
Advance Research and Innovation (ICARI), 2014.

[18] N. Leavitt. Will nosql databases live up to their promise? IEEE
Computer, 43(2):12–14, 2010.

[19] S. LLC. Securing big data: Security recommendations for hadoop and
nosql environments. 2012.

[20] M. Mohamed, O. G. Altrafi, and O. Ismail. Relational vs. nosql
databases: A survey. International Journal of Computer and Information
Technology, 3(3):598–601, 2014.

[21] C. Nance, T. Losser, R. Iype, and G. Harmon. Nosql vs rdbms - why
there is room for both. In Southern Association for Information Systems
Conference, 2013.

[22] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov. Security
issues in nosql databases. In IEEE 10th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom), pages 541–547, 2011.

[23] R. P. Padhy, M. R. Patra, and S. C. Satapathy. Rdbms to nosql:
Reviewing some next-generation non-relational database’s. International
Journal of Advances in Engineering, Science and Technology (IJAEST),
11(1):15–30, 2011.

[24] E. Pattuk, M. Kantarcioglu, V. Khadilkar, H. Ulusoy, and S. Mehrotra.
Bigsecret: A secure data management framework for key-value stores.
In 6th IEEE International Conference on Cloud Computing, pages 147–
154, 2013.

[25] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly encrypted
database system. IACR Cryptology ePrint Archive, 2016:591, 2016.

[26] R. Pontes, F. Maia, J. Paulo, and R. M. P. Vilaça. Saferegions:
Performance evaluation of multi-party protocols on hbase. In 35th IEEE
Symposium on Reliable Distributed Systems Workshops (SRDS), pages
31–36, 2016.

[27] E. Sahafizadeh and M. A. Nematbakhsh. A survey on security issues
in big data and nosql. Advances in Computer Science: An International
Journal, 4(4):68–72, 2015.

[28] H. Shahriar and H. M. Haddad. Security vulnerabilities of nosql and
sql databases for mooc applications. International Journal of Digital
Society (IJDS), 8(1), 2017.

[29] V. Sharma and M. Dave. Sql and nosql databases. International Journal
of Advanced Research in Computer Science and Software Engineering,
2(8), 2012.

[30] X. Yuan, X. Wang, C. Wang, C. Qian, and J. Lin. Building an
encrypted, distributed, and searchable key-value store. In 11th ACM on
Asia Conference on Computer and Communications Security (AsiaCCS),
pages 547–558, 2016.

[31] A. Zahid, R. Masood, and M. A. Shibli. Security of sharded nosql
databases: A comparative analysis. In Conference on Information
Assurance and Cyber Security (CIACS), pages 1–8, 2014.

	Introduction
	Related Work
	Comparison of Relational and NoSQL Databases
	Reliability of Transactions
	Scalability Issues and Cloud Support
	Complexity and Big Data Management
	Data Model
	Data Warehouse and Crash Recovery
	Privacy and Security

	Proposed Security and Privacy Solutions
	Pseudonyms-based Communication Network
	Monitoring, Filtering and Blocking

	Conclusions
	References

