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Abstract. Perhaps the most widely appreciated linked data principle is the 

one that instructs linked data providers to provide useful information using the 

standards (i.e., RDF and SPARQL). Such information corresponds to patterns 

expressed as SPARQL queries that are matched against the RDF graph. Until 

recently, it was not possible to create a pattern without specifying the exact path 

that would match against the underlying graph. The advent of the SPARQL 1.1 

Recommendation introduced property paths as a new graph matching paradigm 

that allows the employment of Kleene star * (and its variant Kleene plus +) 

unary operators to build SPARQL queries that are agnostic of the underlying 

RDF graph structure. In this paper, we present the Top-k Shortest Paths in large 

typed RDF Datasets Challenge the highlights the key aspects of property path 

queries that employ the Kleene star operator. 
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1 Introduction 

In the context of SPARQL, queries are patterns that are matched against an RDF 

graph. Until recently, it was not possible to create a pattern without specifying the 

exact path of the underlying graph (in terms of real data and/or variables) that would 

match against the graph. The advent of SPARQL 1.1 introduced property paths as a 

new graph matching paradigm that allows the employment of Kleene star * (and it's 

variant +) unary operators to build SPARQL queries that are agnostic of the underly-

ing RDF graph structure. For example, the graph pattern: :Mike (foaf:knows)+ ?per-

son . is a SPARQL query that asks for all the persons that know somebody that knows 

somebody (and so on) that :Mike knows. Thus, property path queries extend the tradi-
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tional graph pattern matching expressiveness of SPARQL 1.0 with navigational ex-

pressiveness. 

The ability to express path patterns that are agnostic of the underlying graph struc-

ture is certainly a step forward. Still though, it is impossible to retrieve the actual 

paths through a property path SPARQL query. This is due to the fact that navigational 

queries ask for paths of arbitrary length within the RDF graph without specifying the 

actual graph patterns that constitute the path at query execution time.  

Moreover, it is reasonable to assume that an RDF graph contains numerous paths 

of varying length between two arbitrary nodes. Therefore, another requirement that 

arises from the inherent navigational expressiveness of property path queries is the 

provision of results that are ranked according to their path length.   

In this paper, we present the Top-k Shortest Paths in large typed RDF Datasets 

Challenge that took place in Heraklion, Crete, from May, 31st to June, 2nd 2016 as part 

of the Extended Semantic Web Conference - ESWC 2016. The Challenge evolves 

around the notion of navigational queries expressed as property path queries employ-

ing the Kleene star * (and it's variant +) unary operator. The goal of this challenge is 

to highlight the key features of this special kind of SPARQL queries and accordingly 

promote research on this field.  

 The rest of this paper is structured as follows: 

2 Motivation for the Challenge 

Navigational queries is a well-known type of queries on graph databases, where the 

corresponding results contain binary relations over the nodes of the graph [1]. The 

advent of SPARQL 1.1 Recommendation facilitated the creation of such queries in 

RDF graphs through the notion of property paths, which are defined as possible routes 

through a graph between two nodes. Property path queries can be seen as regular ex-

pressions over paths between two nodes in the RDF graph.  

Equally important to the syntax of such queries is the ability of the underlying 

triplestore engines to fetch results in reasonable time. Soon after the announcement of 

property paths, important issues were reported dealing with the efficient processing of 

the deriving queries. More specifically, it was initially required that all paths that sat-

isfy the specified regular expression be enumerated and for each path the terminal 

nodes had to be reported. Based on this, valid paths containing cycles could lead to 

non-terminating results [2], [3]. The Recommendation (www.w3.org/TR/sparql11-

property-paths/)  exhibited quick reflexes and accordingly dealt with this issue by 

replacing the initial bag semantics (i.e., duplicates within results are detained) under-

pinning property paths with the more agile set semantics (i.e., duplicates within re-

sults are not detained). 

Apart from the theoretical lifting to the definition of such navigational queries ex-

pressed through property paths, there is still much to be done concerning their appli-

cation to real-time, triplestore engines [3], [4]. For example, the following navigation-

al query fails to terminate when addressed to a triplestore containing 10% of 



DBpedia's size (The query was addressed to the Jena TDB containing a DBpedia 

dump that was downloaded from: http://benchmark.dbpedia.org/):  

PREFIX dbo: <http://dbpedia.org/ontology/> 

PREFIX dbp: <http://dbpedia.org/resource/> 

SELECT DISTINCT ?a WHERE { 

?a (!a)*/dbo:language dbp:Thai_language 

} 

By nature, this kind of navigational queries tends to yield plenty of results. This is 

attributed to the fact that it employs Kleene star unary operators. Therefore, 

GSPARQL [5] emerged as an extension to the formal SPARQL 1.1 Recommendation 

capable of addressing such requirement by defining a set of filtering symbols adher-

ing to the property path expression. Alternatively, the use of a LIMIT in such queries 

can control the number of results. However, in the absence of some kind of semantic 

ordering, semantically important results may be left out of the result set. 

In this Challenge, we argue that results corresponding to shorter paths are more 

important in terms of semantics than results corresponding to longer paths. The cur-

rent version of SPARQL 1.1 Recommendation does not impose any criteria for rank-

ing the corresponding results. To alleviate this problem, we consider the length of the 

matched paths as a generic ranking criterion of the results that correspond to a naviga-

tional query. By providing this ranking, the user may safely choose a limit knowing 

that the returned results are the most important. 

3 Structure of the Challenge 

This Challenge evolves around the development and deployment of systems that re-

turn a specified number of ordered paths between two nodes in a given RDF graph. 

The systems should be able to accept navigational queries represented as SPARQL 

queries and accordingly return an ordered set of paths.  

The organizing committee evaluates each submitted system based on its ability to 

address the requirements of two Tasks. Each Task is comprised of two parts. The first 

part is meant to assess the effectiveness of the corresponding system, whereas the 

second part is meant to assess its scalability in terms of the number of paths that are 

requested. 

Thus, for each one of the Tasks of the Challenge, the Challengers should develop a 

system that makes use of the following input data: 

1. Start node: The first node of every path that will be returned. 

2. End node: The last node of every path that will be returned. 

3. k: The required number of paths. 



4. ppath expression: A property path expression describing the pattern of the re-

quired paths. 

5. Dataset: The RDF graph containing the start node and end node. 

Each Challenger should respond to each Task by providing k paths between 

the Start node and the End node of the Dataset ordered by their length. Such paths 

should comply with the given ppath expression. A path is defined as a sequence of 

nodes and edges within the RDF graph: 

(A,P1,U1,P2,U2,P3,U3,..,Un-1,Pn,B) 

More specifically, A corresponds to the Start node (i.e., subject), B to the End node 

(i.e., object), Pi to an edge (i.e., predicate) and Ui to an intermediate node. The path 

length equals to the corresponding number of edges (e.g., the above path length 

equals to n). 

After developing a system pertaining to the aforementioned requirements, each 

Challenger should deploy the system in the context of the specific Tasks outlined in 

the following section. Essentially, each Task provides a slightly altered set of input 

data. Prior to the announcement of the actual data of the Challenge, Challengers have 

the opportunity to test the effectiveness of their system by employing the training data 

that are published by the organizers to the website of the Challenge 

(https://bitbucket.org/ipapadakis/eswc2016-challenge/).  

4 Tasks 

As stated in the previous section, the Challenge is comprised of two Tasks. Both 

Tasks require the implementation of a system capable of returning an ordered set of 

paths. Such a system should be able to respond to five input parameters. 

4.1 Task1 - part1 

The first part of the first Task asks for a certain number (i.e., k) of paths between two 

nodes (i.e., A and B) of the evaluation dataset (i.e., RDF graph D), ordered by their 

length. There is no specific pattern such paths should comply to. In SPARQL dialect, 

such paths should comply to the following property path expression: !:*. 

Practical Example.  

The image below depicts the example RDF dataset D1. Each node is a subject or 

object while each edge is a predicate. 
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Fig. 1. Example Dataset D1 

D1 contains exactly 4 paths from A to B: 

1. (A,P,u3,p7,B) 

2. (A,p3,u6,P,B) 

3. (A,p1,u1,p2,u2,p8,B) 

4. (A,P,u3,p4,u4,p5,u5,p6,u3,p7,B) 

At this point, it should be mentioned that a path is valid only if it contains unique tri-

ples. For example, the path:  

(A,P,u3,p4,u4,p5,u5,p6,u3,p4,u4,p5,u5,p6,u3,p7,B)  

is not valid, since the triple: u3,p4,u4 exists more than once. 

If task1 requires 3 paths between A and B within D1, the expected results should 

be the top-3 shortest paths from A to B: 

1. (A,P,u3,p7,B) 

2. (A,p3,u6,P,B) 

3. (A,p1,u1,p2,u2,p8,B) 



Note that the first two paths have the same length (i.e., 2), since they both contain two 

edges). The third path has a length that equals to 3, so it comes after the first two 

paths. 

4.2 Task1 - part2 

The second part of the first Task is meant to test the systems implemented by the 

Challengers in terms of scalability. More specifically, the second part differentiates 

from the first part by the number of requested paths. This time, such a number is a 

very large number. Thus, part2 requires a certain number (i.e., k’) of paths between 

two nodes (i.e., A and B) of the evaluation dataset (i.e., RDF graph D), ordered by 

their length. There is no specific pattern such paths should comply to. In SPARQL 

dialect, such paths should comply to the following property path expression: !:*. 

4.3 Task2 - part1 

The second Task is motivated from the fact that in real life, SPARQL queries usually 

employ predicates in the context of specific URIs.  

Thus, the first part of the second Task differentiates from the corresponding part of 

the first Task by imposing a specific pattern to the required paths. More specifically, 

the second Task requires a certain number (i.e., l) of paths between two nodes (i.e., A' 

and B') of the evaluation dataset (i.e., RDF graph D), ordered by their length. Each 

and every path should have the edge P as the outgoing edge of A', or the incoming 

edge of B'. In SPARQL dialect, such paths should comply to the following property 

path expression: (P/(!:)*)|((!:)*/P). 

Practical Example.  

Fig. 1 depicts the example RDF dataset D1. Each node is a subject or object while 

each edge is a predicate. If Task2 requires 2 paths between A and B within D1, the 

expected results should be the top-2 shortest paths from A to B that have P as their 

first or last edge: 

1. (A,P,u3,p7,B) 

2. (A,p3,u6,P,B) 

If Task2 requires 3 paths between A and B within D1, the expected results should 

be the top-3 shortest paths from A to B that have P as their first or last edge: 

1. (A,P,u3,p7,B) 

2. (A,p3,u6,P,B) 

3. (A,P,u3,p4,u4,p5,u5,p6,u3,p7,B) 

Note that the path (A,p1,u1,p2,u2,p8,B) is omitted since P is neither the first nor 

the last edge of the path, so it does not fit into the requirements of the path pattern. 



4.4 Task2 - part2 

The second part of the second Task is meant to test the solutions provided by the 

Challengers in terms of scalability. More specifically, the second part differentiates 

from the first part by the number of requested paths. This time, such a number is a 

very large number. Thus, Task2 requires a certain number (i.e., l’) of paths between 

two nodes (i.e., A' and B') of the evaluation dataset (i.e., RDF graph D), ordered by 

their length. Every path should have the edge P as the outgoing edge of A', or the in-

coming edge of B'. In SPARQL dialect, such paths should comply to the following 

property path expression: (P/(!:)*)|((!:)*/P). 

5 Datasets and training material 

All systems that participate in the Challenge, should be able to provide ranked lists of 

paths pertaining to the requirements of each Task. The organizing committee has pre-

pared two datasets for the Challengers, namely the training and the evaluation dataset. 

The training dataset was published not long after the announcement of the Challenge 

(available at: https://bitbucket.org/ipapadakis/eswc2016-challenge/downloads) and 

was accompanied with a set of input parameters together with the expected paths. It 

was meant to aid Challengers in developing their systems by showing the correct re-

sults in a given set of input parameters.  

The evaluation dataset (together with the actual input data of each Task) is the ac-

tual dataset upon which Challengers should deploy their systems and harvest the paths 

that are requested from each Task.  

The training and the evaluation datasets correspond to transformations of the 10% 

dataset and the 100% dataset of the DBpedia SPARQL Benchmark (available at: 

http://aksw.org/Projects/DBPSB.html) respectively. More specifically, both datasets 

are free of blank nodes and untyped nodes. An untyped node is a node that does not 

appear as subject in triples adhering to the pattern: "Node rdf:type Type". Scripts are 

also available to enable the Challengers to build the datasets. The training dataset 

consists of 9,996,907 triples, while the evaluation dataset consists of 110,621,287 

triples (about 11 times larger). 

The organizing committee decided to remove untyped nodes from the datasets in 

an effort to promote the development of systems that make use of some kind of rea-

soning. 

5.1 Description of the training dataset and accompanying material 

The training dataset contains 9,996,907 triples and is accompanied by four queries 

for each Task together with their corresponding results. All the queries are published 

to the front page of the Challenge’s website whereas the corresponding results are 

published to the Downloads section of the website. The results of the training queries 

are comprised of 38 files that consist of ranked paths. Each file is named after a cer-

tain pattern: task_query_<number of paths>.txt. For example, the file task2_q2_3.txt 

https://bitbucket.org/ipapadakis/eswc2016-challenge/downloads
http://aksw.org/Projects/DBPSB.html
http://aksw.org/Projects/DBPSB.html


refers to the second training query of the second task (containing 3 paths ranked by 

their length. 

Each line of every file is a path represented as a json-encoded array, which con-

tains nodes and edges. For example, the following line: 

["http://dbpedia.org/resource/1952_Winter_Olympics", 

"http://dbpedia.org/property/after", 

"http://dbpedia.org/resource/1956_Winter_Olympics", 

"http://dbpedia.org/property/after", 

"http://dbpedia.org/resource/1960_Winter_Olympics", 

"http://dbpedia.org/property/officiallyOpenedBy", 

"http://dbpedia.org/resource/Richard_Nixon", 

"http://dbpedia.org/property/defense", 

"http://dbpedia.org/resource/Elliot_Richardson"] 

corresponds to a path, which starts with node 

http://dbpedia.org/resource/1952_Winter_Olympics and ends 

with node http://dbpedia.org/resource/Elliot_Richardson. 

The start node reaches node 

http://dbpedia.org/resource/1956_Winter_Olympics through edge 

http://dbpedia.org/property/after. 

Then, node 

http://dbpedia.org/resource/1956_Winter_Olympics reaches 

node http://dbpedia.org/resource/1960_Winter_Olympics through 

edge http://dbpedia.org/property/after. 

Then, node 

http://dbpedia.org/resource/1960_Winter_Olympics reaches node 

http://dbpedia.org/resource/Richard_Nixon through edge 

http://dbpedia.org/property/officiallyOpenedBy. 

Finally, node http://dbpedia.org/resource/Richard_Nixon reaches 

the final node http://dbpedia.org/resource/Elliot_Richardson 

through edge http://dbpedia.org/property/defense. 

The length of the aforementioned path equals to 4 (the total number of edges in the 

path). 

6 Assessment process 

According to the Challenge’s specifications, each Challenger should deploy the 

system he/she has created in the context of each Task. Moreover, a paper is requested, 

describing the proposed approach. The Challengers’ submissions were assessed ac-

cording to the following criteria: 

6.1 Overall paper quality (50%) 

The Program Committee assessed each paper based on well-defined criteria including 

but not limited to: 



 Presentation and organization of the paper 

 Scientific / technical quality of the paper 

 Technical data of the paper 

 English style, writing quality 

 Figures and tables 

 Innovation of approach 

 Efficiency of approach (e.g., by measuring the complexity of an algorithm) 

 Consumption of resources 

 Scalability 

6.2 System quality (50%) 

As mentioned earlier in this paper, each Challenger should be able to address the 

requirements of two Tasks. The Tasks are published to the Downloads section of the 

Challenge’s website (i.e., evaluation_input_data.txt) together with the evaluation da-

taset. The Challengers should address as many Tasks as possible and upload the cor-

responding result sets of each Task within a specific time frame. The submitted sets 

are compared against each other in terms of the paths they contain. More specifically, 

the set that contains the highest number of shortest paths is ranked first, the set that 

contains the second highest number of shortest paths is ranked second, etc. In case of 

a tie, the tied sets are compared against the second shortest paths. If the sets remain 

tied, they are compared against the third shortest paths, and so on. All Tasks have 

equal weight to the "System quality" criterion. Each Task is assessed separately from 

the others.  

7 Submissions 

Finding top-k shortest paths in an RDF graph cannot be easily solved by employ-

ing generic graph algorithms, a fact that all contestants to the challenge early recog-

nized and pointed out. The required solutions impose additional constraints, such as 

loop-free or specially patterned paths. Moreover, the solutions exhibited in the chal-

lenge revealed that the performance of any classical graph algorithm can be impracti-

cal due to the sheer size of the usually huge and strongly interconnected linked data 

graphs, which may contain billions -or even trillions- of triples. Dealing with graphs 

of that size poses also practical problems, as most implementations tend to be 

memory-based: there is no guarantee that data will always fit in memory. For all these 

reasons, the proposed solutions decided to use well-known algorithms only as a base, 

by tweaking or building on top of them. 



When preparing a query-answering solution, one can choose to move part of the 

computational burden to off-line processing that runs once in order to build some kind 

of index. This pre-built index is consulted later on every query, lowering thus the re-

sponse time of the answering system. This is the case with the solution proposed in 

[6]. In their proposal the authors build their modified MinG algorithm inspired from 

the ρ-index algorithm [9]. The proposed solution uses a hierarchical clustering sche-

ma for representing the graph interconnection information divided in levels of graph 

segments. This schema is built in a step of off-line preprocessing and records the node 

interconnections in intra-segment Path Type Matrices (PTMs),as well as inter-

segment Inverted Files (INFs) for various levels of segmentation. The authors employ 

compaction tweaks in order to keep the required storage space to reasonable size. The 

same hierarchical structure is used during querying: beginning from both start and end 

of the requested path and iterating through the levels of segment information, all valid 

solutions are accumulated. A final step removes duplicate triples and sorts by path 

length, in order to achieve the final top-k solution. Due to compaction techniques the 

proposed implementation fares better for specific graph patterns in terms of indexing 

space and time compared to the algorithms it is based upon. 

In a more graph-theoretical based approach, [7] extends the classical  Eppstein’s 

top-k shortest path algorithm [10], which uses a bounded-degree graph to output k 

paths using breadth-first search. The proposed solution chooses to implement a totally 

in-line (query-time) processing scheme, which computes a single source shortest path 

tree T for the target node of any query. The proposed solution augments the classical 

algorithm's steps by pruning any invalid paths, excluding them from further pro-

cessing. A further modification allows for the discovery of paths starting or ending 

with a particular predicate, as requested in challenge terms. The algorithm is symmet-

rical to any end of the path; in order to find paths ending in a particular predicate the 

authors invert the graph and treat the ending node as the beginning node. Similarly to 

other contestant solutions, the authors had to employ memory compaction techniques, 

such as representing URIs with integer values, in order to ensure that the totality of 

graph data fit in memory during query processing. The proposed solution complies 

with the additional requirements of the challenge with a time complexity which is 

only moderately above the one of Eppstein’s generic algorithm. The implementation 

results show that, in general, the overhead increases with the number of loops in the 

queried graph. This is why the successful ability to prune invalid paths is essential 

characteristic of the proposed solution. 

The last, but not least, participating solution to the challenge [8] follows a more 

application-oriented approach. The authors build on an existing platform for automat-

ed story-telling [11] that reduces the number of arbitrary resources revealed in inter-

connecting paths. The main characteristic of the proposed system is a computationally 

inexpensive and asynchronous server-side interface (Triple Pattern Fragments) that 

decomposes queries into simple and small parts. The application clients are in charge 

of querying by requesting and accumulating shortest paths ordered by length, while 

checking at the same time that the extracted paths fulfill the requirements of the chal-

lenge, i.e., they constitute loop-free unique-triple solutions. The implementation fa-

vors the querying of shortest paths first, which is beneficial to the control of candidate 



path explosion. An additional property of the proposed system is its decentralized 

nature: decomposing the initial query into small parts allows for the employment of 

multiple data endpoints without modification of the proposed algorithm, providing 

thus a solution to memory limitations imposed by a single centralized linked data 

graph. While more data needs to be buffered and streamed, the implementation results 

testify that the proposed solution scales very well with the size of input graph. 

8 Assessment 

According to the aforementioned assessment process, each one of the three Chal-

lengers that registered to the event had to submit a paper describing the overall ap-

proach. Then, after the publication of the evaluation dataset, each Challenger had to 

submit a set of four ranked path lists pertaining to the four sets of input parameters 

(two for each Task) that also have been published to the Challenge’s website.  

Each paper was assigned for reviewing to three members of the Program Commit-

tee. Then, the Challengers had to address the requirements of each Task by uploading 

the corresponding ranked path lists.  

The scoring of each Challenger is outlined in Table 1. 

 
Table 1. Challengers scoring. 

Challenger Task1, part1 

(no. of paths) 

Task1, part2 

(no. of paths) 

Task2, part1 

(no. of paths) 

Task2, part2   

(no. of paths) 

Paper review 

1 377 450 370 4201 7 

2 377 53008 374 52664 4 

3 10    -2 

The Challenger ids at the first column refer to the following teams: 

1. Sven Hertling, Markus Schröder, Christian Jilek and Andreas Dengel. 

Top-k Shortest Paths in Directed, Labeled Multigraphs 

2. Zohaib Hassan, Mohammad Abdul Qadir, Muhammad Arshad Islam, 

Umer Shahzad and Nadeem Akhter. Modified MinG Algorithm to Find 

Top-K Shortest Paths from large RDF Graphs 

3. Laurens De Vocht, Ruben Verborgh, Erik Mannens and Rik Van de Wal-

le. Using Triple Pattern Fragments To Enable Streaming of Top-k Short-

est Paths via the Web 

More specifically, all Challengers managed to compute some paths according to 

the requirements of the first part of the first Task. All three path lists were analyzed to 

see whether they conformed to the following two criteria: 

1. Each list contains unique paths 

2. Each path contains unique triples 

Thus, the first Challenger submitted 383 paths of which 377 were valid, whereas the 

second Challenger submitted 377 valid paths. The third Challenger submitted 10 valid 

paths. Consequently, we had a tie between the first two Challengers. 



For the remaining tests, the third Challenger failed to submit any results at all, so 

the team was eliminated from the system evaluation. 

For the second part of the first Task, the first Challenger submitted 456 paths of 

which 450 were valid, whereas the second Challenger submitted 53008 valid paths. 

Consequently, the second Challenger won this leg of the Challenge. 

For the first part of the second Task, the first Challenger submitted 370 valid paths 

whereas the second Challenger submitted 374 paths of which 370 were valid. Conse-

quently, we had a tie between the first two Challengers. 

For the second part of the second Task, the first Challenger submitted 4235 paths 

of which 4201 were valid, whereas the second Challenger submitted 52664 valid 

paths. Consequently, the second Challenger won this leg of the Challenge. 

Finally, the second Challenger also won the paper reviewing process. Consequent-

ly, the second Challenger was the overall winner of Top-k Shortest Paths in large 

typed RDF Datasets Challenge and was accordingly handed over the prize of the 

Challenge (i.e., annual subscription to the Commercial License of Blazegraph's graph 

database with GPU acceleration). 

9 Conclusions – Lessons learned 

The Top-k Shortest Paths in large typed RDF Datasets Challenge was organised 

for the first time under the auspices of the 13th ESWC 2016 conference. Its primal 

goal is to raise the awareness of the semantic web community to property paths that 

have been recently introduced as part of the SPARQL1.1 Recommendations. A prop-

erty path query that employs the Kleene star (*) or its variant Kleene plus (+) opera-

tors deserves much attention, since it exhibits certain scalability issues that are di-

rectly proportional to the size of the underlying RDF graph.  

Although the participation to the Challenge could be greater, still all three qualified 

Challengers presented diverse approaches to address the requirements of the Chal-

lenge. More specifically, the third Challenger aimed in creating a custom-made index 

structure that was specifically designed to serve navigational queries in RDF graphs. 

The first Challenger followed a completely different approach. He employed triple 

pattern fragments technology in an effort to break the original query down to se-

quences of triple pattern fragment requests that were accordingly dispatched to clients 

for asynchronous processing. Finally, the second Challenger modified a well-known 

path finding algorithm to fit the requirements of the Challenge. 

All three Challengers realized that the bigger the RDF graph, the more difficult it is 

to retrieve the requested results. Thus, scalability issues that are posed by the very 

nature of navigational queries are identified as a significant issue of this special kind 

of property path queries. Along these lines, future work is targeted towards the crea-

tion of systems capable of efficiently handling such queries in large RDF graphs. 
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