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Image Classification

o Data Mining tasks: feature extraction,
pattern recognition,
prediction,
classification,
optimization,
annotation, ...

* Image Classification
e the task is to assign images with same semantic content to predefined classes
e two types of classification schemes: supervised and unsupervised.

e Supervised classification
e requires relevance feed-back and/or correction from a human annotator

e Unsupervised classification (clustering)
e does not require human intervention

e The performance of the image classification algorithms relies on the
efficient optimization techniques
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‘ Biologically Inspired Optimization
techniques

e Optimization task
e process of adjusting the control variables to find the levels that achieve the best possible
outcome.

Biologically Inspired systems: Artificial Immune Systems,
Particle Swarm,
Ant Colony Systems
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Ant Colony Optimization (ACO)

e ACO is a meta-heuristic that uses strategies of real ants to solve optimization
problems

e ACO is inspired by the observation of real ant colonies and is based on the indirect
communication of a colony of simple agents, called (artificial) ants, mediated by
(artificial) pheromone trails.

e An important and interesting behavior of ant colonies is their foraging behavior,
and, in particular, how ants can find shortest paths between food sources and their
nest.
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Ant Colony System

e The Ant System algorithm (AS) was first proposed to solving the
Traveling Salesman Problem (TSP).

= Given a set of £ cities and a set of distances between them, we call g the length of the
path between cities /and J.

of choosing next jnode:
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ACO-based Image Classifier

The K-Means approach optimized by Ant Colony Optimization (ACO) System

The procedure of K-Means algorithm:
e Specify k, the number of clusters to be generated.
Chose & points at random as cluster centers.
Assign each instance to its closest cluster center.
Recalculate the centroid for each cluster.
Reassign all instances to the closest
cluster center.
e Iterate until the cluster centers

don’t change any more.
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ACO-based Image Classifier

The K-Means approach optimized by Ant Colony Optimization (ACO) System
The procedure of K-Means algorithm:
e Specify k, the number of clusters to be generated.
Chose & points at random as cluster centers.
Assign each instance to its closest cluster center.
Recalculate the centroid for each cluster.
Reassign all instances to the closest +
cluster center.
e Iterate until the cluster centers

don’t change any more.
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ACO-based Image Classifier

e ACO plays its part in assigning each image to a cluster and each ant is giving its
own classification solution.

Initialize pheromone level to 1, heuristic information, _ B
the number of clusters to A'and number of ants to . Toxe) = Nictl X
For each ant, let each image x belong to one cluster . 5
with the probability. _Txepny

Calculate new cluster center; p(xi Ci) K
If the new cluster centers converge to the old ones, yr“(xi Cil]

go to next step otherwise, go to Step 2.
Update the pheromone level on all images according to the quality of the solution.

(N-Y Dist(C,,C,)
. Jif X,
> sumDist (C;)

T(xi,cj)(t):p‘T(xi,cj)(t_l)"‘ZA ATy, ) =+

If the termination criterion is satisfied go to next step otherwise, go to Step 2.
. Output the optimal solution.
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Experimental results

» For feature representing of images was used MPEG7 - Color Layout Descriptor (CLD)
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Experimental results

The Corel image database

K- Means ACO-Classifier
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[%] [%] [%] [%] [%] [%]

I I -

Lions Rural “
Buildings Cars
Tigers Clouds 79 -
&
I\/]\/'v %O Queen Mary
University of London

MULTIMEDIA & VISION RESEARCH LAB S“d e 1 1 Department of Electronic Enginnering



‘ Experimental results

The Window on the UK 2000” database
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Experimental results

Classification results on visual similar / dissimilar images

Precision Results
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Optimization of COP-K-Means

COP-K-Means

. semi-supervised variant of K-Means, where initial background knowledge,
provided in the form of constraints between instances in the dataset, is used in
the clustering process.

. Two types of constraints: must-link
cannot-link

. Goal - minimization of an objective function:
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Evaluation of COP-K-Means

« Advantages :
* less computational overhead
* high efficiency for large data sets

* high dependency of random initialization of cluster centers - often

terminates at a /ocal optimuim ARREeIeony @plimization

* sensitivity to outliers and noise
» constrains in feature space don’t interpret semantic information
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Future Work

* sensitivity to outliers and noise
» constrains in feature space don’t interpret semantic informatio
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Future Work

: » sensitivity to outliers and noise
: * constrains in feature space don’t interpret semantic |nformat|on

Antiree

Similarity
Space

I\MV W Queen Mary
University of London

MULTIMEDIA & VISION RESEARCH LAB S“d e 1 7 Department of Electronic Enginnering




‘ AntTree: New model for clustering

e General principles

each ant: represents node of tree (data)

- outgoing link; a;can maintain toward
another ant

- incoming links; other ants maintain
. 0/ toward 2,
£ | - d, support, d,.. position of moving ant

e Main algorithm
1. all ants placed on the support;
initialization: 7_,.(a,)=1, T .m(a;)=0
2. While there exists non connected ant a; Do

3. If ai is located on the support Then Support case
4. Else Ant case

5. End While
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Conclusion and Future work

e The ACO makes the K-Means algorithm less dependent on the initial
parameters; hence it makes it more stable and efficient

Next steps:
e Integration of AntTree to training process of ACO/COP-K-Means

e Implementation of Ant Colony Optimization with Multi-descriptor space
(MPEG-7 descriptors) and optimization of the performance.
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Conclusion and Future work

e The ACO makes the K-Means algorithm less dependent on the initial
parameters; hence it makes it more stable and efficient

Next steps:
e Integration of AntTree to training process of ACO/COP-K-Means

e Implementation of Ant Colony Optimization with Multi-descriptor space
(MPEG-7 descriptors) and optimization of the performance.

o Feature Subset Selection Using Ant Colony Optimization

Thank you for your attention!
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