Image Classification Using an Ant Colony Optimization Approach

Tomas Piatrik and Ebroul Izquierdo

Multimedia & Vision Research Group Queen Mary University of London

Overview

- Introduction
- Biologically Inspired Optimization Systems

Slide 2

- Ant Colony Optimization (ACO)
- ACO based image classifier
- Experimental Results
- Future work
 - AntTree new model for clustering
- Conclusions

Image Classification

• Data Mining tasks: feature extraction,

pattern recognition, prediction, classification, optimization, annotation, ...

• Image Classification

- the task is to assign images with same semantic content to predefined classes
- two types of classification schemes: *supervised* and *unsupervised*.
- Supervised classification
 - requires relevance feed-back and/or correction from a human annotator
- Unsupervised classification (clustering)
 - does not require human intervention

• The performance of the image classification algorithms relies on the efficient optimization techniques

Biologically Inspired Optimization techniques

Optimization task

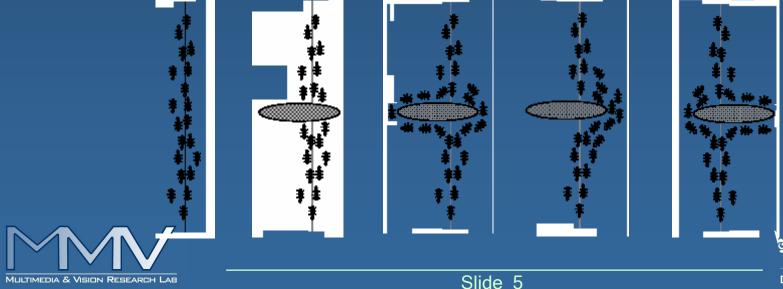
• process of adjusting the control variables to find the levels that achieve the best possible outcome.

Biologically Inspired systems:

Artificial Immune Systems, Particle Swarm, Ant Colony Systems

Ant Colony Optimization (ACO)

- ACO is a meta-heuristic that uses strategies of real ants to solve optimization problems
- ACO is inspired by the observation of real ant colonies and is based on the indirect communication of a colony of simple agents, called (artificial) ants, mediated by (artificial) pheromone trails.
- An important and interesting behavior of ant colonies is their foraging behavior, and, in particular, how ants can find shortest paths between food sources and their nest.



Department of Electronic Enginnering

larv

Ant Colony System

• The Ant System algorithm (AS) was first proposed to solving the Traveling Salesman Problem (TSP).

 Given a set of *n* cities and a set of distances between them, we call d_{ij} the length of the path between cities *i* and *j*.

• The probability of choosing next *j* node:

0

$$p_{ij}^{k}(t) = \begin{cases} \frac{(\tau_{ij}(t))^{\alpha} (\tau_{ij}(t))^{\alpha}}{\sum_{k \in allowed} (\tau_{ij}(t))^{\alpha}} & \text{Heuristic information :} \\ \frac{(\tau_{ij}(t))^{\alpha}}{\sum_{k \in allowed} (\tau_{ij}(t))^{\alpha}} & \text{Heuristic information :} \\ \eta_{ij} = -\frac{\tau_{ij}}{2} & \tau_{ij}(t) = -\frac{\tau_{ij}}{2} &$$

Slide d

ACO-based Image Classifier

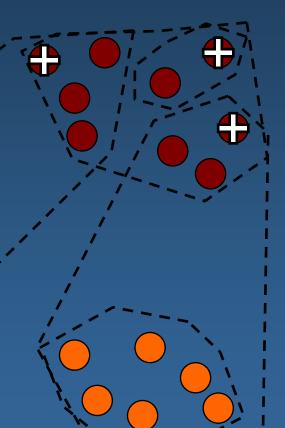
The K-Means approach optimized by Ant Colony Optimization (ACO) System

- The procedure of K-Means algorithm:
- Specify *k*, the number of clusters to be generated.
- Chose *k* points at random as cluster centers.
- Assign each instance to its closest cluster center.
- Recalculate the centroid for each cluster.
- Reassign all instances to the closest cluster center.
- Iterate until the cluster centers don't change any more.

ACO-based Image Classifier

The K-Means approach optimized by Ant Colony Optimization (ACO) System

- The procedure of K-Means algorithm:
- Specify *k*, the number of clusters to be generated.
- Chose *k* points at random as cluster centers.
- Assign each instance to its closest cluster center.
- Recalculate the centroid for each cluster.
- Reassign all instances to the closest cluster center.
- Iterate until the cluster centers don't change any more.



ACO-based Image Classifier

- ACO plays its part in assigning each image to a cluster and each ant is giving its own classification solution.
- *Step 1*: Initialize pheromone level to 1, heuristic information, the number of clusters to *K* and number of ants to *m*.
- *Step 2*: For each ant, let each image *x* belong to one cluster with the probability.
- *Step 3:* Calculate new cluster center;

If the new cluster centers converge to the old ones,

go to next step otherwise, go to Step 2.

 $\eta_{(X_i,C_j)} = \frac{B}{\text{Dist}(X)}$

$$p_{(X_i,C_j)} = \frac{\tau^{\alpha}_{(X_i,C_j)}\eta^{\beta}}{\sum_{i} \tau^{\alpha}_{(X_i,C_j)}\eta}$$

• Step 4: Update the pheromone level on all images according to the quality of the solution.

$$\tau_{(X_i,C_j)}(t) = \rho \cdot \tau_{(X_i,C_j)}(t-1) + \sum_{i=0}^{m} \Delta \tau_{(X_i,C_j)} = \begin{cases} \frac{N \cdot \sum_{j \neq i} Dist(C_i,C_j)}{\sum_{j \neq i}}, \text{if } X_i \\ \sum_{i=0}^{K} sumDist(C_i) \end{cases}$$

• Step 5: If the termination criterion is satisfied go to next step otherwise, go to Step 2.

Step 9. Output the optimal solution.

Queen Mary

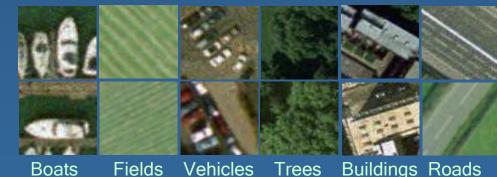
MULTIMEDIA & VISION RESEARCH LAB

• For feature representing of images was used MPEG7 - Color Layout Descriptor (CLD)

$$Sim(X_i, X_j) = \sqrt{\sum_{k=1}^{28} (X_i(k) - X_j(k))^2} + \sqrt{\sum_{k=29}^{43} (X_i(k) - X_j(k))^2} + \sqrt{\sum_{k=44}^{58} (X_i(k) - X_j(k))^2} + \sqrt$$

• The Corel image database - 700 images with 7 semantic concepts

• The Window on the UK 2000" database - 390 images with 6 sets



Slide 10

The Corel image database

Class1	Class2	K-Means			ACO-Classifier		
		Precision [%]	Recall [%]	Accuracy [%]	Precision [%]	Recall [%]	Accuracy [%]
Rural	Buildings	69	93	76	72	93	78.5
Lions	Cars	60	52	62	68	51	72
Elephants	Clouds	82	93	86	84	95	88.5
Lions	Rural	57	68	59	65	68	66
Buildings	Cars	70	94	76.5	74	90	79.5
Tigers	Clouds	79	73	82.5	76	76	84

Department of Electronic Enginnering

Slide 11

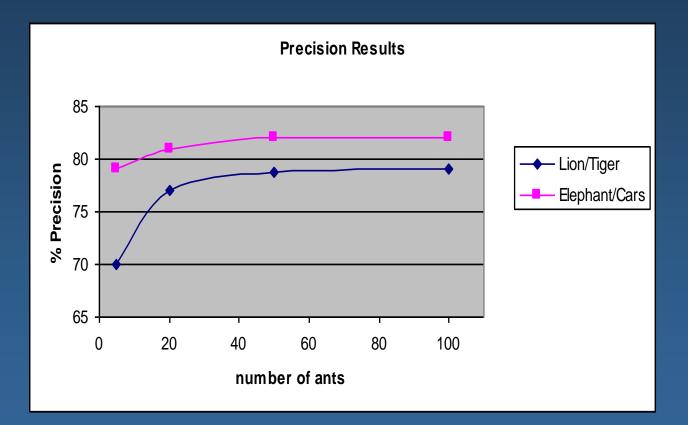
The Window on the UK 2000" database

Class1	Class2	K-Means			ACO-Classifier		
		Precision [%]	Recall [%]	Accuracy [%]	Precision [%]	Recall [%]	Accuracy [%]
Boat	Vehicle	68	65	62	73	70	70
Tree	Building	76	67	85	98	66	90
Building	Road	60	45	60	78	44	71
Field	Vehicle	87	68	93	90	68	94
Field	Tree	98	60	96	100	61	97
Road	Vehicle	68	52	73	78	57	79
Tree	Road	88	54	82	96	54	90

Department of Electronic Enginnering

Slide 12

Classification results on visual similar / dissimilar images

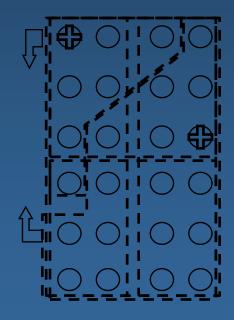


Slide 13

Optimization of COP-K-Means

COP-K-Means

- semi-supervised variant of K-Means, where initial background knowledge, provided in the form of constraints between instances in the dataset, is used in the clustering process.
- Two types of constraints: *must-link cannot-link*
- Goal minimization of an objective function:



Evaluation of COP-K-Means

- Advantages :
 - less computational overhead
 - high efficiency for large data sets
- Weakness :
 - high dependency of random initialization of cluster centers often terminates at a *local optimum* — Ant Colony Optimization
 - sensitivity to outliers and noise
 - constrains in feature space don't interpret semantic information

Slide 15

New constraints representation in Feature space

Future Work

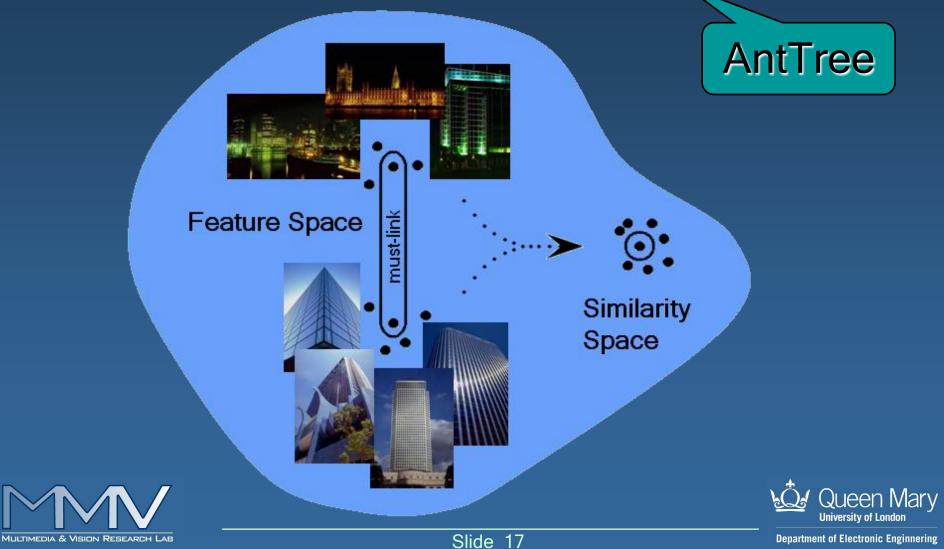
- sensitivity to outliers and noise
- constrains in feature space don't interpret semantic information

MULTIMEDIA & VISION RESEARCH LAB

must-link

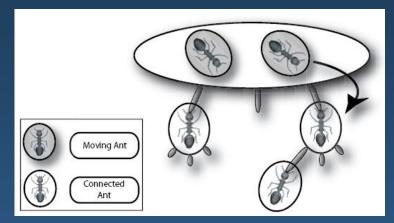
Future Work

sensitivity to outliers and noise
constrains in feature space don't interpret semantic information



AntTree: New model for clustering

• General principles



• Main algorithm

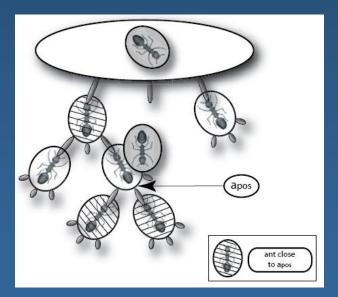
1. all ants placed on the support;

initialization: $T_{sim}(a_i)=1$, $T_{dissim}(a_i)=0$

- 2. <u>While</u> there exists non connected ant $a_i \underline{Do}$
- 3. <u>If</u> ai is located on the support <u>Then</u> *Support case*
- 4. <u>Else</u> Ant case
- 5. End While

<u>each ant</u>: represents node of tree (data)

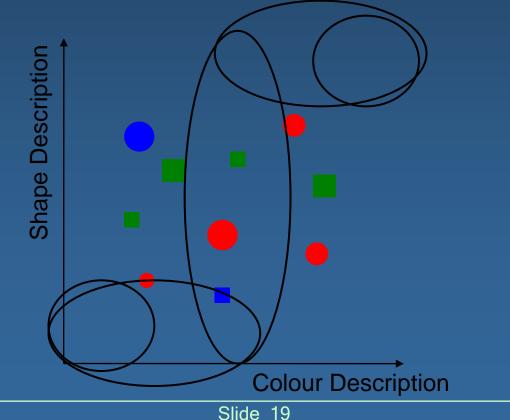
- outgoing link; *a_i* can maintain toward another ant
- incoming links; other ants maintain toward *a_i*
- *a_o* support, *a_{pos} position of moving ant*



Conclusion and Future work

MULTIMEDIA & VISION RESEARCH LAB

- The ACO makes the K-Means algorithm less dependent on the initial parameters; hence it makes it more stable and efficient
 Next steps:
- Integration of AntTree to training process of ACO/COP-K-Means
- Implementation of Ant Colony Optimization with Multi-descriptor space (MPEG-7 descriptors) and optimization of the performance.



Conclusion and Future work

- The ACO makes the K-Means algorithm less dependent on the initial parameters; hence it makes it more stable and efficient
 Next steps:
- Integration of AntTree to training process of ACO/COP-K-Means
- Implementation of Ant Colony Optimization with Multi-descriptor space (MPEG-7 descriptors) and optimization of the performance.
 - Feature Subset Selection Using Ant Colony Optimization

Thank you for your attention!

tomas.piatrik@elec.qmul.ac.uk

