Human Activity Language: Grounding Concepts with a Linguistic Framework

Gutemberg Guerra-Filho

\{guerra@cs.umd.edu\}

Yiannis Aloimonos

\{yiannis@cfar.umd.edu\}
Computer Vision Laboratory Department of Computer Science University of Maryland

Theme

- To close the semantic gap in multimedia technologies, we need to understand human action
- There are at least 3 spaces devoted to human action: The Visual, the Motoric, and the Language Space.
- Each of these spaces is characterized by a distinct language, with its own alphabet, words, and syntax.

Initial Meeting

-Multimedia

-Semantics

-Semantics arises from human action
-Big brother problem

VHF's: Visual Human Filters

人 x a x

Applying the VHF's

Visual Approach: Sequences of poses

What are "Key" poses?

- Extremal poses of the body.
- How are they found?
- Single-view example:

Video

Vertical motion Red = Down
Blue $=\mathrm{Up}$

What are "Key" poses?

Frame

Key frames

Pose Grammar

- Probabilistic context-free Grammar (PCFG).

$$
\begin{array}{cc}
\text { Start } \rightarrow V & p=1 \\
V \rightarrow V A \mid A & p=1 / 2 \\
A \rightarrow A_{1}\left|A_{2}\right| \ldots \mid A_{g} & \forall i, p\left(A_{i} \mid A\right)=1 / g \\
A_{i} \rightarrow q_{a b} q_{b c} q_{c d} \cdots & p\left(q_{a b} q_{b c} q_{c d} \cdots \mid A_{i}\right)=1 \\
q_{c d} \rightarrow p_{c}^{u} p_{d}^{v} & \sum_{\substack{\text { allowed } \\
u, v}} p\left(p_{c}^{u} p_{d}^{v} \mid q_{c d}\right)=1 \\
p_{i}^{v} \rightarrow s_{k} & p\left(s_{k} \mid p_{i}^{v}\right) \text { obtained at runtime }
\end{array}
$$

Rules created from training data

Parse an input video

1. Key frame detection.
2. Silhouette matching on keyframes.
3. Computation of $P\left(s_{k} \mid p_{i}{ }^{V}\right)$ as shown earlier.
4. Probabilistic parsing using the PCFG.

Detect view changes

One year later...

- That's What I Found

- Easier to solve the visual action problem by going first through the motor action problem.
- Human Activity Language (HAL): a new language for human activity.

Spaces for Human Action

NATURAL LANGUAGE

Verb "walk"

Problem

 11 1 1 111 1, - 1 R1 11
 11111111111 11

Language Origin

Concept Grounding

Sensory-Motor Intelligence

Symbolic Reasoning

Praxicon

Human Activity Language

Kinetology

View-Invariance

Compactness

Segmentation

RightAnkle

RightKnee

LetAnkle

LefKKnee

Lefthip

Symbolization

Morphology

Hips
Leftip

LefAnkle
RightHip
Righthip
RightKnee
RightAnkle
RightAnkle
LeftShoulder
LeftElbow
LeftWrist
RightShoulder
RightElbow
RightPalm
RThumbA
RThumbB
RThumbC
RlndexA

RMidglee
RRingA
解ing
Rtittile eq

Morpho-kinetology

Right Hip Flexion-Extension

Morpho-syntax

Syntax

- Noun: Body parts active during the execution of a human activity
- Verb: Changes each active joint experiences during the activity execution
- Adjective: Specifies the initial state of the active joints (initial posture)
- Adverb: Modifies verb with purpose of generalization

Parallel Syntax

\{crick, cross fingers, knuckle, graze, jab, clean foot\}
Constraint Matrix

Action

Sequential Syntax

Conclusions

NATURAL LANGUAGE

Verb "walk"
Sensory-Motor Theories vs Symbolic Theories

The Behaviorome Project

