# A Bayesian Network Approach to Multi-feature Based Image Retrieval

Authors: Qianni Zhang and Ebroul Izquierdo Affiliation: Multimedia and Vision Research Lab Department of Electronic Engineering Queen Mary, University of London



## Introduction

- Aims:
  - Devising a Bayesian Network approach to object centered image retrieval
  - Combining multiple low-level visual primitives as cue for retrieval.

#### Two stages:

- the initial retrieval stage is concentrated on finding an optimal multi-feature space and doing a simple initial retrieval within this space;
- the Bayesian inference stage uses the initial retrieval information and seeks for a more precise secondretrieval.



## Introduction

#### • Originalities:

- The beliefs are formulated regarding concepts in possibly small regions of the entire image - "<u>elementary</u> <u>building blocks</u>"
- Multi-Objective Optimization (MOO) technique is adopted for estimating the 'optimal' multi-feature metric space
- Initial beliefs on probability distributions of concepts is modelled by the initial retrieval information
- A global knowledge network is constructed by treating an entire image as a scenario to infer the presence of objects from the interactions between different concepts on image level.



### Framework Overview





## Initial Retrieval in an Optimized Multi-Feature Space

- Semantic image retrieval relies on the retrieval of semantically meaningful objects within the image
- An example of one image being divided into elementary building blocks that contain different concepts is illustrated in figure below





# Feature Extraction and Distance Calculation

- MPEG-7
  - Colour Layout Descriptor (CLD)
  - Colour Structure Descriptor (CSD)
  - Dominant Colour Descriptor (DCD)
  - Edge Histogram Descriptor (EHD)
- Others
  - Gabor Filter (GF)
  - Gray-Level Co-occurrence Matrix (GLCM)
  - HSV Histogram (HSV)
- Most low-level visual descriptors show non-linear behaviors and their direct combination is meaningless.
- Thus in this paper a combination of distances with certain metric is used as a similarity measurement.



# Feature Extraction and Distance Calculation

• A distance function:

 A training distance matrix can be constructed on a group of '*representative building blocks*'



• Min-Max Normalization:



# Combining Distances and Constructing a Multiple Feature Space

 To combine the distances in different feature spaces for a element, the most straightforward candidate is the linear combination of the distances:

$$M(\mathbf{A}, D) = \begin{cases} \alpha_1 d_1^{(1)} + \alpha_2 d_2^{(1)} + \alpha_3 d_3 \\ \alpha_1 d_1^{(2)} + \alpha_2 d_2^{(2)} + \alpha_3 \\ \dots \end{cases}$$

- A is the set of weighting factors
- *D* is the set of distance functions for single descriptors.
- The problem of finding the suitable metric consists of finding the optimal set of weighting factors <u>a</u>, where optimality is regarded in the sense of both concept representation and discrimination power.

### Combining Distances and Constructing a Multiple Feature Space

- In the group of 'representative building blocks', each block in the representative group is used as an objective function
- Optimization can be achieved by minimizing the objective functions
- In most cases there is no way to optimize all objective functions simultaneously
- Multi-Objective Optimization (MOO) usually involves conflicting objectives
- The interaction between different objectives leads to a set of compromised solutions, largely known as the Pareto-Optimal Solutions or Pareto Front



### Combining Distances and Constructing a Multiple Feature Space

- The optimal solution is to find the minimal value of <u>M</u> and its corresponding  $\underline{\alpha}$ , subject to constraint  $\sum \alpha_i$
- The initial retrieval is done in this space of <u>and</u> if any elementary block of an image is classified as relevant, the entire image is classified as relevant.



#### **Bayesian Network Inference**

- Decisions are inferred using Bayesian networks that are conventional directed acyclic graphs with conditional probability distributions
- All the probabilities used in the Bayesian Network are computed from information in the belief ontology which is created using the initial retrieval results.
- For a particular concept user has in mind, each image in database can be classified into two classes: "relevant" or "irrelevant". The two possible classes are denoted as  $C_{l'}$  where  $k \in I$ .
- In this paper  $C_1$  corresponds to relevant and  $C_2$  corresponds to irrelevant



#### **Bayesian Network Inference**

- The prior probability of class membership is denoted as  $P(C_{k}$
- The features used to help the inference are denoted as a set  $_{E}$  and  $P(\mathbf{F}$  is the evidence factor
- Inferences are based on the posterior probability function  $P(C_1 \mid ]$
- Bayes law:  $P(C_1 | \mathbf{F}) = \frac{P(\mathbf{F} | C_1)}{D(\mathbf{T})}$
- The classification criterion used is <u>maximum a posteriori</u> (MAP) given by:  $C_1 = \arg \max P(C)$



#### The Belief Ontology and Bayesian Network

- In this paper the belief ontology is modeled using Bayesian belief network
- They have similarity that the nodes represent propositions which are either true or false and has probabilities associated with co-occurrence relationships
- However, the co-occurrence relationships between concepts are <u>not causal</u> and the probabilities kept with these relationships simply measure statistical association.
- Why Bayesian networks:
  - A Bayesian network is naturally capable of encoding the joint probability distribution, it is considered as a representation of ontology
  - It is also an inference engine that can exploit information contained in interrelationships and dependencies between elements



#### Constructing the Bayesian Networks

- A small ontology containing concepts of objects that are typical in the experimental database is first pre-defined
- For each concept in the belief ontology containing p concepts  $C_t$ , t = 1, ..., a Bayesian network is constructed by considering this concept  $C_1$  and all other concepts that are directly linked to  $C_1$ .
- A Bayesian network such as the one shown below can be constructed:





#### **Experimental Setup**

- 700 images from 'Corel' dataset
- Descriptors: MPEG7: CLD, CSD, DCD, EHD, Others: GF, GLCM, HSV
- Concepts:
  'Building', 'Cloud', 'Grass', 'Lion', 'Tiger'.
- Number of images for each concept:

141, 264, 279, 100, 100



#### Evaluation

#### Initial retrieval result – using optimal multi-feature metric

| %        | Combina<br>tion<br>metric | CLD | CSC | DCD | EHD | GF | GLCM | HSV |
|----------|---------------------------|-----|-----|-----|-----|----|------|-----|
| building | 70                        | 48  | 24  | 20  | 74  | 40 | 38   | 42  |
| cloud    | 79                        | 76  | 70  | 38  | 68  | 28 | 34   | 78  |
| grass    | 92                        | 92  | 86  | 28  | 82  | 64 | 88   | 88  |
| lion     | 88                        | 50  | 36  | 16  | 50  | 24 | 40   | 66  |
| tiger    | 60                        | 2   | 46  | 7   | 14  | 26 | 34   | 57  |

#### Retrieval result using Bayesian Network

| %               | building | cloud | grass | lion | tiger |
|-----------------|----------|-------|-------|------|-------|
| Initial results | 70       | 79    | 92    | 88   | 60    |
| Bayesian net    | 72       | 84    | 94    | 92   | 60    |

